283 research outputs found

    Low doses of the novel caspase-inhibitor GS-9450 leads to lower caspase-3 and -8 expression on peripheral CD4+ and CD8+ T-cells

    Get PDF
    Chronic hepatitis C virus (HCV) infection is characterized by increased rates of apoptotic hepatocytes and activated caspases have been shown in HCV-infected patients. GS-9450, a novel caspase-inhibitor has demonstrated hepatoprotective activity in fibrosis/apoptosis animal models. This study evaluated the effects of GS-9450 on peripheral T-cell apoptosis in chronic HCV-infected patients. As sub study of the GS-US-227-0102, a double-blind, placebo-controlled phase 2a trial evaluating the safety and tolerability of GS-9450, apoptosis of peripheral CD4+ and CD8+ T-cells was measured using activated caspase-3, activated caspase-8 and CD95 (Fas). Blood samples were drawn at baseline, day 14 after therapy and at 5 weeks off-treatment follow-up in the first cohort of 10 mg. In contrast to the placebo-treated patients, GS-9450 caused a median of 46% decrease in ALT-values from baseline to day 14 in all treated patients (median of 118–64 U/l) rising again to a median of 140 U/l (19%) at 5 weeks off-treatment follow-up. In GS9450-treated patients, during treatment and follow-up, percentages of activated caspase-3+ and caspase-8 expression tended to decrease, in contrast to placebo-treated patients. Interestingly, compared to healthy controls, higher percentages of caspase-3 and caspase-8 positive CD4+ and CD8+ T-cells were demonstrated in HCV-infected patients at baseline. Decreased ALT-values were observed in all HCV-infected patients during treatment with low dose of the caspase-inhibitor GS-9450 accompanied by a lower expression of caspase-3 and -8 on peripheral T-cells. Furthermore, at baseline percentages of activated caspase-3, activated caspase-8 and CD95+ T-cells were higher in chronic HCV-infected patients compared to healthy controls

    Recognition of homo- and heterosubtypic variants of influenza A viruses by human CD8+ T lymphocytes

    Get PDF
    In the present study, the recognition of epitope variants of influenza A viruses by human CTL was investigated. To this end, human CD8(+) CTL clones, specific for natural variants of the HLA-B*3501-restricted epitope in the nucleoprotein (NP(418-426)), were generated. As determined in (51)Cr release assays and by flow cytometry with HLA-B*3501-peptide tetrameric complexes, CTL clones were found to be specific for epitopes within one subtype or cross-reactive with heterosubtypic variants of the epitope. Using eight natural variants of the epitope, positions in the 9-mer important for T cell recognition and involved in escape from CTL immunity were identified and visualized using multidimensional scaling. It was shown that positions 4 and 5 in the 9-mer epitope were important determinants of T cell specificity. The in vivo existence of CD8(+) cells cross-reactive with homo- and heterosubtypic variants of the epitope was further confirmed using polyclonal T cell populations obtained after stimulation of PBMC with different influenza A viruses. Based on the observed recognition patterns of the clonal and polyclonal T cell populations and serology, it is hypothesized that consecutive infections with influenza viruses containing different variants of the epitope select for cross-reactive T cells in vivo

    CMV immune evasion and manipulation of the immune system with aging

    Get PDF
    Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to elicit conventional and unconventional T cell responses.DvB and SPHVdB are funded by a strategic program grant RIVM. MRW and SEJ are funded by the Medical Research Council Grant (GB) [MR/K021087/1]. The work summarized in the section titled BThe impact of aging on IL-10 secreting HCMV latent antigen specific T cells and latent viral load^ was supported by the Cambridge NIHR BRC Cell Phenotyping Hub. We gratefully acknowledge the participation of all Cambridge NIHR BioResource volunteers, and we thank the Cambridge BioResource staff for their help with volunteer recruitment. The Cambridge BioResource is funded by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC) and the NHS Blood and Transplant (NHSBT). CAB is funded by an NIH grant AI101423. LCS was funded in part by grants from the Helmholtz Association (HGFVI-424) and the German Scientific Council (SFB900 TP B2)

    High CD8+ T Cell Activation Marks a Less Differentiated HIV-1 Specific CD8+ T Cell Response that Is Not Altered by Suppression of Viral Replication

    Get PDF
    The relationship of elevated T cell activation to altered T cell differentiation profiles, each defining features of HIV-1 infection, has not been extensively explored. We hypothesized that anti-retroviral suppression of T cell activation levels would lead to alterations in the T cell differentiation of total and HIV-1 specific CD8+ T cell responses among recently HIV-1 infected adults.We performed a longitudinal study simultaneously measuring T cell activation and maturation markers on both total and antigen-specific T cells in recently infected adults: prior to treatment; after the initiation of HAART; and after treatment was halted. Prior to treatment, HIV-1 Gag-specific CD8+ T cells were predominantly of a highly activated, intermediate memory (CD27+CD28-) phenotype, while CMV pp65-specific CD8+ T cells showed a late memory (CD27-CD28-), low activation phenotype. Participants with the highest fraction of late memory (CD27-CD28-) HIV-1-specific CD8+ T cells had higher CD4+ T cell counts (rho = +0.74, p = 0.004). In turn, those with the highest fraction of intermediate memory (CD27+ CD28-) HIV-1 specific CD8+ T cells had high total CD8+ T cell activation (rho = +0.68, p = 0.01), indicating poorer long-term clinical outcomes. The HIV-1 specific T cell differentiation profile was not readily altered by suppression of T cell activation following HAART treatment.A more differentiated, less activated HIV-1 specific CD8+ T cell response may be clinically protective. Anti-retroviral treatment initiated two to four months after infection lowered T cell activation but had no effect on the differentiation profile of the HIV-1-specific response. Intervention during the first month of acute infection may be required to shift the differentiation phenotype of HIV-1 specific responses to a more clinically favorable profile

    High torque tenovirus (TTV) load before first vaccine dose is associated with poor serological response to COVID-19 vaccination in lung transplant recipients

    Get PDF
    BACKGROUND: : Serological responses to COVID-19 vaccination are diminished in recipients of solid organ transplants, especially in lung transplant recipients (LTR), probably as result of immunosuppressive treatment. There is currently no marker of immunosuppression that can be used to predict the COVID-19 vaccination response. Here, we study whether torque tenovirus (TTV), a highly prevalent virus can be used as an indicator of immunosuppression. METHODS: : The humoral response to the mRNA 1273 vaccine was assessed in 103 LTR, who received a transplant between 4 and 237 months prior to vaccination, by measuring Spike (S)-specific IgG levels at baseline, 28 days after first, and 28 days after the second vaccination. TTV loads were determined by RT-PCR and Pearson's correlation coefficient was calculated to correlate serological responses to TTV load. RESULTS: : Humoral responses to COVID-19 vaccination were observed in 41/103 (40%) LTR at 28 days after the second vaccination. 62/103 (60%) were non-responders. Lower TTV loads at baseline (significantly) correlated with higher S-specific antibodies and a higher percentage of responders. Lower TTV loads also strongly correlated with longer time since transplantation, indicating that participants with lower TTV loads were longer after transplantation. CONCLUSIONS: : This study shows a better humoral response to the SARS-CoV-2 vaccine in subjects with a lower TTV load pre-vaccination. In addition, TTV load correlates with the time after transplantation. Further studies on the use of TTV load in vaccination efficacy studies in immunocompromised cohorts should provide leads for the potential use of this marker for optimizing vaccination response

    Early Measles Vaccination During an Outbreak in the Netherlands: Short-Term and Long-Term Decreases in Antibody Respo

    Get PDF
    Background. The majority of infants will not be protected by maternal antibodies until their first measles vaccination, between 12 and 15 months of age. This provides incentive to reduce the age at measles vaccination, but immunological consequences are insufficiently understood, and long-term effects are largely unknown. Methods. A total of 79 infants who received early measles vaccination between 6 and 12 months age and a second dose at 14 months of age were compared to 44 children in a control group who received 1 dose at 14 months of age. Measles virus–specific neutralizing antibody concentrations and avidity were determined up to 4 years of age. Results. Infants who first received measles vaccination before 12 months of age had a long-term decrease in the concentration and avidity of measles virus–specific neutralizing antibodies, compared with infants in the control group. For 11.1% of children with a first dose before 9 months of age, antibody levels at 4 years of age had dropped below the cutoff for clinical protection. Conclusions. Early measles vaccination provides immediate protection in the majority of infants but yields a long-term decrease in neutralizing antibody responses, compared to vaccination at a later age. Additional vaccination at 14 months of age does not improve this. Over the long term, this may result in an increasing number of children susceptible to measles
    corecore