87 research outputs found

    Silver fir (Abies alba Mill.) is able to thrive and prosper under meso-Mediterranean conditions

    Get PDF
    The potential ecological envelope of silver fir (Abies alba Mill.) based on its present distribution suggests a high suitability for moist rather than warm and dry environments. This contrasts with paleoecological evidence reporting its former presence at low elevations under meso-Mediterranean conditions. In this study, we evaluated the growth performance of silver fir at low elevation (20–60 m a.s.l.) under meso-Mediterranean climatic conditions in Tuscany (central Italy). We conducted a dendroecological analysis on Abies alba trees along a geomorphological gradient (from depression to upper slope conditions). Climate-growth relationships were assessed by means of correlations, response functions, pointer years, and superposed epoch analysis. Silver fir was found to grow and regenerate well in these stands mixed with evergreen (e.g., Quercus ilex L.) and thermophilous deciduous Mediterranean tree species (e.g., Q. cerris L.). Summer drought was the most growth-influencing factor, with immediate (i.e., current season) negative impacts on tree-ring widths (TRW). No significant impacts were observed in the four years following extreme summer droughts, but the TRW series (which started between the 1930s and 1950s) showed a growth decline since the mid-1990s that is likely drought-related. Our results show that, provided there is a sufficiently large soil water holding capacity, silver fir provenances exist which are able to withstand Mediterranean summer droughts, can naturally and regularly regenerate in these systems, and may even dominate over typical meso-Mediterranean species. As long as annual precipitation is not too low (i.e., >850 mm) and summer drought conditions not too extreme (i.e., less than three months), silver fir has thus the potential to thrive under warm Mediterranean conditions.ISSN:0378-1127ISSN:1872-704

    Changes in the expression of extracellular regulated kinase (ERK 1/2) in the R6/2 mouse model of Huntington's disease after phosphodiesterase IV inhibition

    Get PDF
    The mitogen-activated protein kinases (MAPKs) superfamily comprises three major signaling pathways: the extracellular signal-regulated protein kinases (ERKs), the c-Jun N-terminal kinases or stress-activated protein kinases (JNKs/SAPKs) and the p38 family of kinases.ERK 1/2 signaling has been implicated in a number of neurodegenerative disorders, including Huntington's disease (HD). Phosphorylation patterns of ERK 1/2 and JNK are altered in cell models of HD. In this study, we aimed at studying the correlations between ERK 1/2 and the neuronal vulnerability to HD degeneration in the R6/2 transgenic mouse model of HD. Single and double-label immunofluorescence for phospho-ERK (pERK, the activated form of ERK) and for each of the striatal neuronal markers were employed on perfusion-fixed brain sections from R6/2 and wild-type mice. Moreover, Phosphodiesterase 4 inhibition through rolipram was used to study the effects on pERK expression in the different types of striatal neurons. We completed our study with western blot analysis. Our study shows that pERK levels increase with age in the medium spiny striatal neurons and in the parvalbumin interneurons, and that rolipram counteracts such increase in pERK. Conversely, cholinergic and somatostatinergic interneurons of the striatum contain higher levels of pERK in the R6/2 mice compared to the controls. Rolipram induces an increase in pERK expression in these interneurons. Thus, our study confirms and extends the concept that the expression of phosphorylated ERK 1/2 is related to neuronal vulnerability and is implicated in the pathophysiology of cell death in HD. (C) 2012 Elsevier Inc. All rights reserved

    PAD4-Mediated Neutrophil Extracellular Trap Formation Is Not Required for Immunity against Influenza Infection

    Get PDF
    During an inflammatory response, neutrophils migrate to the site of infection where they can kill invading pathogens by phagocytosis, secretion of anti-microbicidal mediators or the release of neutrophil extracellular traps (NETs). NETs are specialized anti-microbial structures comprised of decondensed chromatin decorated with microbicidal agents. Increased amount of NETs have been found in patients suffering from the chronic lung inflammatory disease cystic fibrosis, correlating with increased severity of pulmonary obstruction. Furthermore, acute lung inflammation during influenza A infection is characterized by a massive influx of neutrophils into the lung. The role of NETs during virus-mediated lung inflammation is unknown. Peptidylarginine deiminase 4 (PAD4)-mediated deimination of histone H3 and H4 is required for NET formation. Therefore, we generated a PAD4-deficient mouse strain that has a striking inability to form NETs. These mice were infected with influenza A/WSN, and the disease was monitored at the level of leukocytic lung infiltration, lung pathology, viral replication, weight loss and mortality. PAD4 KO fared comparable to WT mice in all the parameters tested, but they displayed slight but statistically different weight loss kinetics during infection that was not reflected in enhanced survival. Overall, we conclude that PAD4-mediated NET formation is dispensable in a mouse model of influenza A infection

    Functional Role of Dimerization of Human Peptidylarginine Deiminase 4 (PAD4)

    Get PDF
    Peptidylarginine deiminase 4 (PAD4) is a homodimeric enzyme that catalyzes Ca2+-dependent protein citrullination, which results in the conversion of arginine to citrulline. This paper demonstrates the functional role of dimerization in the regulation of PAD4 activity. To address this question, we created a series of dimer interface mutants of PAD4. The residues Arg8, Tyr237, Asp273, Glu281, Tyr435, Arg544 and Asp547, which are located at the dimer interface, were mutated to disturb the dimer organization of PAD4. Sedimentation velocity experiments were performed to investigate the changes in the quaternary structures and the dissociation constants (Kd) between wild-type and mutant PAD4 monomers and dimers. The kinetic data indicated that disrupting the dimer interface of the enzyme decreases its enzymatic activity and calcium-binding cooperativity. The Kd values of some PAD4 mutants were much higher than that of the wild-type (WT) protein (0.45 µM) and were concomitant with lower kcat values than that of WT (13.4 s−1). The Kd values of the monomeric PAD4 mutants ranged from 16.8 to 45.6 µM, and the kcat values of the monomeric mutants ranged from 3.3 to 7.3 s−1. The kcat values of these interface mutants decreased as the Kd values increased, which suggests that the dissociation of dimers to monomers considerably influences the activity of the enzyme. Although dissociation of the enzyme reduces the activity of the enzyme, monomeric PAD4 is still active but does not display cooperative calcium binding. The ionic interaction between Arg8 and Asp547 and the Tyr435-mediated hydrophobic interaction are determinants of PAD4 dimer formation

    Characterization of NF-κB reporter U937 cells and their application for the detection of inflammatory immune-complexes

    Get PDF
    Our study tested the hypothesis that immunoglobulins differ in their ability to activate the nuclear factor-κB pathway mediated cellular responses. These responses are modulated by several properties of the immune complex, including the ratio of antibody isotypes binding to antigen. Immunoassays allow the measurement of antigen specific antibodies belonging to distinct immunoglobulin classes and subclasses but not the net biological effect of the combination of these antibodies. We set out to develop a biosensor that is suitable for the detection and characterization of antigen specific serum antibodies. We genetically modified the monocytoid U937 cell line carrying Fc receptors with a plasmid encoding NF-κB promoter-driven GFP. This clone, U937-NF-κB, was characterized with respect to FcR expression and response to solid-phase immunoglobulins. Human IgG3, IgG4 and IgG1 induced GFP production in a time- and dose-dependent manner, in this order of efficacy, while IgG2 triggered no activation at the concentrations tested. IgA elicited no response alone but showed significant synergism with IgG3 and IgG4. We confirmed the importance of activation via FcγRI by direct stimulation with monoclonal antibody and by competition assays. We used citrullinated peptides and serum from rheumatoid arthritis patients to generate immune complexes and to study the activation of U937-NF-κB, observing again a synergistic effect between IgG and IgA. Our results show that immunoglobulins have distinct pro-inflammatory potential, and that U937-NF-κB is suitable for the estimation of biological effects of immune-complexes, offering insight into monocyte activation and pathogenesis of antibody mediated diseases

    Analysis of exome data for 4293 trios suggests GPI-anchor biogenesis defects are a rare cause of developmental disorders.

    Get PDF
    Over 150 different proteins attach to the plasma membrane using glycosylphosphatidylinositol (GPI) anchors. Mutations in 18 genes that encode components of GPI-anchor biogenesis result in a phenotypic spectrum that includes learning disability, epilepsy, microcephaly, congenital malformations and mild dysmorphic features. To determine the incidence of GPI-anchor defects, we analysed the exome data from 4293 parent-child trios recruited to the Deciphering Developmental Disorders (DDD) study. All probands recruited had a neurodevelopmental disorder. We searched for variants in 31 genes linked to GPI-anchor biogenesis and detected rare biallelic variants in PGAP3, PIGN, PIGT (n=2), PIGO and PIGL, providing a likely diagnosis for six families. In five families, the variants were in a compound heterozygous configuration while in a consanguineous Afghani kindred, a homozygous c.709G>C; p.(E237Q) variant in PIGT was identified within 10-12 Mb of autozygosity. Validation and segregation analysis was performed using Sanger sequencing. Across the six families, five siblings were available for testing and in all cases variants co-segregated consistent with them being causative. In four families, abnormal alkaline phosphatase results were observed in the direction expected. FACS analysis of knockout HEK293 cells that had been transfected with wild-type or mutant cDNA constructs demonstrated that the variants in PIGN, PIGT and PIGO all led to reduced activity. Splicing assays, performed using leucocyte RNA, showed that a c.336-2A>G variant in PIGL resulted in exon skipping and p.D113fs*2. Our results strengthen recently reported disease associations, suggest that defective GPI-anchor biogenesis may explain ~0.15% of individuals with developmental disorders and highlight the benefits of data sharing

    Deiminated Epstein Barr virus nuclear antigen I is a target of anti-citrullinated protein antibodies in rheumatoid arthritis

    No full text
    OBJECTIVE: To test the hypothesis that deimination of viral sequences containing Arg-Gly repeats could generate epitopes recognized by anti-citrullinated protein antibodies (ACPAs) that are present in rheumatoid arthritis (RA) sera. METHODS: Multiple antigen peptides derived from Epstein-Barr virus (EBV)-encoded Epstein-Barr nuclear antigen 1 (EBNA-1) were synthesized, substituting the arginines with citrulline, and were used to screen RA sera. Anti-cyclic citrullinated peptide antibodies were purified by affinity chromatography and tested on a panel of in vitro deiminated proteins. Their ability to bind in vivo deiminated proteins was evaluated by immunoprecipitation, using EBV-infected cell lines. RESULTS: Antibodies specific for a peptide corresponding to the EBNA-1(35-58) sequence containing citrulline in place of arginine (viral citrullinated peptide [VCP]) were detected in 50% of RA sera and in <5% of normal and disease control sera. In addition, affinity-purified anti-VCP antibodies from RA sera reacted with filaggrin-derived citrullinated peptides, with deiminated fibrinogen, and with deiminated recombinant EBNA-1. Moreover, anti-VCP antibodies immunoprecipitated, from the lysate of calcium ionophore-stimulated lymphoblastoid cell lines, an 80-kd band that was reactive with a monoclonal anti-EBNA-1 antibody and with anti-modified citrulline antibodies. CONCLUSION: These data indicate that ACPAs react with a viral deiminated protein and suggest that EBV infection may play a role in the induction of these RA-specific antibodies

    Deiminated Epstein-Barr virus nuclear antigen 1 is a target of anti-citrullinated protein antibodies in rheumatoid arthritis

    No full text
    OBJECTIVE: To test the hypothesis that deimination of viral sequences containing Arg-Gly repeats could generate epitopes recognized by anti-citrullinated protein antibodies (ACPAs) that are present in rheumatoid arthritis (RA) sera. METHODS: Multiple antigen peptides derived from Epstein-Barr virus (EBV)-encoded Epstein-Barr nuclear antigen 1 (EBNA-1) were synthesized, substituting the arginines with citrulline, and were used to screen RA sera. Anti-cyclic citrullinated peptide antibodies were purified by affinity chromatography and tested on a panel of in vitro deiminated proteins. Their ability to bind in vivo deiminated proteins was evaluated by immunoprecipitation, using EBV-infected cell lines. RESULTS: Antibodies specific for a peptide corresponding to the EBNA-1(35-58) sequence containing citrulline in place of arginine (viral citrullinated peptide [VCP]) were detected in 50% of RA sera and in <5% of normal and disease control sera. In addition, affinity-purified anti-VCP antibodies from RA sera reacted with filaggrin-derived citrullinated peptides, with deiminated fibrinogen, and with deiminated recombinant EBNA-1. Moreover, anti-VCP antibodies immunoprecipitated, from the lysate of calcium ionophore-stimulated lymphoblastoid cell lines, an 80-kd band that was reactive with a monoclonal anti-EBNA-1 antibody and with anti-modified citrulline antibodies. CONCLUSION: These data indicate that ACPAs react with a viral deiminated protein and suggest that EBV infection may play a role in the induction of these RA-specific antibodies
    corecore