4,403 research outputs found
Equation-free modeling of evolving diseases: Coarse-grained computations with individual-based models
We demonstrate how direct simulation of stochastic, individual-based models
can be combined with continuum numerical analysis techniques to study the
dynamics of evolving diseases. % Sidestepping the necessity of obtaining
explicit population-level models, the approach analyzes the (unavailable in
closed form) `coarse' macroscopic equations, estimating the necessary
quantities through appropriately initialized, short `bursts' of
individual-based dynamic simulation. % We illustrate this approach by analyzing
a stochastic and discrete model for the evolution of disease agents caused by
point mutations within individual hosts. % Building up from classical SIR and
SIRS models, our example uses a one-dimensional lattice for variant space, and
assumes a finite number of individuals. % Macroscopic computational tasks
enabled through this approach include stationary state computation, coarse
projective integration, parametric continuation and stability analysis.Comment: 16 pages, 8 figure
NIR spectroscopy of the Sun and HD20010 - Compiling a new linelist in the NIR
Context: Effective temperature, surface gravity, and metallicity are basic
spectroscopic stellar parameters necessary to characterize a star or a
planetary system. Reliable atmospheric parameters for FGK stars have been
obtained mostly from methods that relay on high resolution and high
signal-to-noise optical spectroscopy. The advent of a new generation of high
resolution near-IR spectrographs opens the possibility of using classic
spectroscopic methods with high resolution and high signal-to-noise in the NIR
spectral window. Aims: We aim to compile a new iron line list in the NIR from a
solar spectrum to derive precise stellar atmospheric parameters, comparable to
the ones already obtained from high resolution optical spectra. The spectral
range covers 10 000 {\AA} to 25 000 {\AA}, which is equivalent to the Y, J, H,
and K bands. Methods: Our spectroscopic analysis is based on the iron
excitation and ionization balance done in LTE. We use a high resolution and
high signal-to-noise ratio spectrum of the Sun from the Kitt Peak telescope as
a starting point to compile the iron line list. The oscillator strengths (log
gf) of the iron lines were calibrated for the Sun. The abundance analysis was
done using the MOOG code after measuring equivalent widths of 357 solar iron
lines. Results: We successfully derived stellar atmospheric parameters for the
Sun. Furthermore, we analysed HD20010, a F8IV star, from which we derived
stellar atmospheric parameters using the same line list as for the Sun. The
spectrum was obtained from the CRIRES- POP database. The results are compatible
with the ones found in the literature, confirming the reliability of our line
list. However, due to the quality of the data we obtain large errors.Comment: 9 pages and 9 figure
Grundfos: Chlorination of Swimming Pools
In this report a model is developed for describing the mixing of chemicals in water systems. We construct a three-variable ODE system describing the concentration of chlorine, bacteria, and organic molecules. We show that a pump strategy is effective in regulating the chlorine concentration
Differential electrophysiological response during rest, self-referential, and non-self-referential tasks in human posteromedial cortex
The electrophysiological basis for higher brain activity during rest and internally directed cognition within the human default mode network
(DMN) remains largely unknown. Here we use intracranial recordings in
the human posteromedial cortex (PMC), a core node within the DMN,
during conditions of cued rest, autobiographical judgments, and
arithmetic processing. We found a heterogeneous profile of PMC
responses in functional, spatial, and temporal domains. Although the
majority of PMC sites showed increased broad gamma band activity
(30-180 Hz) during rest, some PMC sites, proximal to the retrosplenial
cortex, responded selectively to autobiographical stimuli. However, no
site responded to both conditions, even though they were located within
the boundaries of the DMN identified with resting-state functional
imaging and similarly deactivated during arithmetic processing. These
findings, which provide electrophysiological evidence for heterogeneity
within the core of the DMN, will have important implications for
neuroimaging studies of the DMN
Identifying component modules
A computer-based system for modelling component dependencies and identifying component modules is presented. A variation of the Dependency Structure Matrix (DSM) representation was used to model component dependencies. The system utilises a two-stage approach towards facilitating the identification of a hierarchical modular structure. The first stage calculates a value for a clustering criterion that may be used to group component dependencies together. A Genetic Algorithm is described to optimise the order of the components within the DSM with the focus of minimising the value of the clustering criterion to identify the most significant component groupings (modules) within the product structure. The second stage utilises a 'Module Strength Indicator' (MSI) function to determine a value representative of the degree of modularity of the component groupings. The application of this function to the DSM produces a 'Module Structure Matrix' (MSM) depicting the relative modularity of available component groupings within it. The approach enabled the identification of hierarchical modularity in the product structure without the requirement for any additional domain specific knowledge within the system. The system supports design by providing mechanisms to explicitly represent and utilise component and dependency knowledge to facilitate the nontrivial task of determining near-optimal component modules and representing product modularity
Modes of Random Lasers
In conventional lasers, the optical cavity that confines the photons also
determines essential characteristics of the lasing modes such as wavelength,
emission pattern, ... In random lasers, which do not have mirrors or a
well-defined cavity, light is confined within the gain medium by means of
multiple scattering. The sharp peaks in the emission spectra of semiconductor
powders, first observed in 1999, has therefore lead to an intense debate about
the nature of the lasing modes in these so-called lasers with resonant
feedback. In this paper, we review numerical and theoretical studies aimed at
clarifying the nature of the lasing modes in disordered scattering systems with
gain. We will discuss in particular the link between random laser modes near
threshold (TLM) and the resonances or quasi-bound (QB) states of the passive
system without gain. For random lasers in the localized regime, QB states and
threshold lasing modes were found to be nearly identical within the scattering
medium. These studies were later extended to the case of more lossy systems
such as random systems in the diffusive regime where differences between
quasi-bound states and lasing modes were measured. Very recently, a theory able
to treat lasers with arbitrarily complex and open cavities such as random
lasers established that the TLM are better described in terms of the so-called
constant-flux states.Comment: Review paper submitted to Advances in Optics and Photonic
Global and regional cortical thinning in first-episode psychosis patients: relationships with clinical and cognitive features
BackgroundThe thickness of the cortical mantle is a sensitive measure for identifying alterations in cortical structure. We aimed to explore whether first episode schizophrenia patients already show a significant cortical thinning and whether cortical thickness anomalies may significantly influence clinical and cognitive features.MethodWe investigated regional changes in cortical thickness in a large and heterogeneous sample of schizophrenia spectrum patients (n=142) at their first break of the illness and healthy controls (n=83). Magnetic resonance imaging brain scans (1.5 T) were obtained and images were analyzed by using BRAINS2. The contribution of sociodemographic, cognitive and clinical characterictics was investigated.ResultsPatients showed a significant total cortical thinning (F=17.55, d=−0.62, p0.53). No significant group × gender interactions were observed (all p’s>0.15). There were no significant associations between the clinical and pre-morbid variables and cortical thickness measurements (all r’s<0.12). A weak significant negative correlation between attention and total (r=−0.24, p=0.021) and parietal cortical thickness (r=−0.27, p=0.009) was found in patients (thicker cortex was associated with lower attention). Our data revealed a similar pattern of cortical thickness changes related to age in patients and controls.ConclusionsCortical thinning is independent of gender, age, age of onset and duration of the illness and does not seem to significantly influence clinical and functional symptomatology. These findings support a primary neuro-development disorder affecting the normal cerebral cortex development in schizophrenia
Integrated engineering environments for large complex products
An introduction is given to the Engineering Design Centre at the University of Newcastle upon Tyne, along with a brief explanation of the main focus towards large made-to-order products. Three key areas of research at the Centre, which have evolved as a result of collaboration with industrial partners from various sectors of industry, are identified as (1) decision support and optimisation, (2) design for lifecycle, and (3) design integration and co-ordination. A summary of the unique features of large made-to-order products is then presented, which includes the need for integration and co-ordination technologies. Thus, an overview of the existing integration and co-ordination technologies is presented followed by a brief explanation of research in these areas at the Engineering Design Centre. A more detailed description is then presented regarding the co-ordination aspect of research being conducted at the Engineering Design Centre, in collaboration with the CAD Centre at the University of Strathclyde. Concurrent Engineering is acknowledged as a strategy for improving the design process, however design coordination is viewed as a principal requirement for its successful implementation. That is, design co-ordination is proposed as being the key to a mechanism that is able to maximise and realise any potential opportunity of concurrency. Thus, an agentoriented approach to co-ordination is presented, which incorporates various types of agents responsible for managing their respective activities. The co-ordinated approach, which is implemented within the Design Co-ordination System, includes features such as resource management and monitoring, dynamic scheduling, activity direction, task enactment, and information management. An application of the Design Co-ordination System, in conjunction with a robust concept exploration tool, shows that the computational design analysis involved in evaluating many design concepts can be performed more efficiently through a co-ordinated approach
- …
