412 research outputs found

    Multiscale Kinetic Monte-Carlo for Simulating Epitaxial Growth

    Full text link
    We present a fast Monte-Carlo algorithm for simulating epitaxial surface growth, based on the continuous-time Monte-Carlo algorithm of Bortz, Kalos and Lebowitz. When simulating realistic growth regimes, much computational time is consumed by the relatively fast dynamics of the adatoms. Continuum and continuum-discrete hybrid methods have been developed to approach this issue; however in many situations, the density of adatoms is too low to efficiently and accurately simulate as a continuum. To solve the problem of fast adatom dynamics, we allow adatoms to take larger steps, effectively reducing the number of transitions required. We achieve nearly a factor of ten speed up, for growth at moderate temperatures and large D/F.Comment: 7 pages, 6 figures; revised text, accepted by PR

    Information-theoretic active contour model for microscopy image segmentation using texture

    Get PDF
    High throughput technologies have increased the need for automated image analysis in a wide variety of microscopy techniques. Geometric active contour models provide a solution to automated image segmentation by incorporating statistical information in the detection of object boundaries. A statistical active contour may be defined by taking into account the optimisation of an information-theoretic measure between object and background. We focus on a product-type measure of divergence known as Cauchy-Schwartz distance which has numerical advantages over ratio-type measures. By using accurate shape derivation techniques, we define a new geometric active contour model for image segmentation combining Cauchy-Schwartz distance and Gabor energy texture filters. We demonstrate the versatility of this approach on images from the Brodatz dataset and phase-contrast microscopy images of cells

    Inheritance of color in Angora goats

    Get PDF

    A new ghost cell/level set method for moving boundary problems:application to tumor growth

    Get PDF
    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth

    Beeldcultuur, een drieluik.I: Deconstructie van het fenomeen culturele studies

    Get PDF
    An important process in glass manufacture is the forming of the product. The forming process takes place at high rate, involves extreme temperatures and is characterised by large deformations. The process can be modelled as a coupled thermodynamical/mechanical problem including the interaction between glass, air and equipment. In this paper a general mathematical model for glass forming is derived, which is specified for different forming processes, in particular pressing and blowing. The model should be able to correctly represent the flow of the glass and the energy exchange during the process. Various modelling aspects are discussed for each process, while several key issues, such as the motion of the plunger and the evolution of the glass-air interfaces, are examined thoroughly. Finally, some examples of process simulations for existing simulation tools are provided

    Stability and error analysis for a diffuse interface approach to an advection-diffusion equation on a moving surface

    Get PDF
    In this paper we analyze a fully discrete numerical scheme for solving a parabolic PDE on a moving surface. The method is based on a diffuse interface approach that involves a level set description of the moving surface. Under suitable conditions on the spatial grid size, the time step and the interface width we obtain stability and error bounds with respect to natural norms. Furthermore, we present test calculations that confirm our analysis

    Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation

    Get PDF
    The extent of variation in DNA methylation patterns in healthy individuals is not yet well documented. Identification of inter-individual epigenetic variation is important for understanding phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy individuals, we generated base-resolution DNA methylation maps to document inter-individual epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments (iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements compared to non-iVMFs, and were associated with genome regulation and chromatin function elements. Further, variably methylated genes were disproportionately associated with regulation of transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates that iVMF methylation at differentially expressed exons has a positive correlation and local effect on the inclusion of that exon in the mRNA transcript

    Provenancing Archaeological Wool Textiles from Medieval Northern Europe by Light Stable Isotope Analysis (δ13C, δ15N, δ2H)

    Get PDF
    We investigate the origin of archaeological wool textiles preserved by anoxic waterlogging from seven medieval archaeological deposits in north-western Europe (c. 700-1600 AD), using geospatial patterning in carbon (δ13C), nitrogen (δ15N) and non-exchangeable hydrogen (δ2H) composition of modern and ancient sheep proteins. δ13C, δ15N and δ2H values from archaeological wool keratin (n = 83) and bone collagen (n = 59) from four sites were interpreted with reference to the composition of modern sheep wool from the same regions. The isotopic composition of wool and bone collagen samples clustered strongly by settlement; inter-regional relationships were largely parallel in modern and ancient samples, though landscape change was also significant. Degradation in archaeological wool samples, examined by elemental and amino acid composition, was greater in samples from Iceland (Reykholt) than in samples from north-east England (York, Newcastle) or northern Germany (Hessens). A nominal assignment approach was used to classify textiles into local/non-local at each site, based on maximal estimates of isotopic variability in modern sheep wool. Light element stable isotope analysis provided new insights into the origins of wool textiles, and demonstrates that isotopic provenancing of keratin preserved in anoxic waterlogged contexts is feasible. We also demonstrate the utility of δ2H analysis to understand the location of origin of archaeological protein samples

    Prevalence of Bourbon and Heartland viruses in field collected ticks at an environmental field station in St. Louis County, Missouri, USA

    Get PDF
    Heartland and Bourbon viruses are pathogenic tick-borne viruses putatively transmitted by Amblyomma americanum, an abundant tick species in Missouri. To assess the prevalence of these viruses in ticks, we collected 2778 ticks from eight sampling sites at Tyson Research Center, an environmental field station within St. Louis County and close to the City of St. Louis, from May - July in 2019 and 2021. Ticks were pooled according to life stage and sex, grouped by year and sampling site to create 355 pools and screened by RT-qPCR for Bourbon and Heartland viruses. Overall, 14 (3.9%) and 27 (7.6%) of the pools were positive for Bourbon virus and Heartland virus respectively. In 2019, 11 and 23 pools were positive for Bourbon and Heartland viruses respectively. These positives pools were of males, females and nymphs. In 2021, there were 4 virus positive pools out of which 3 were positive for both viruses and were comprised of females and nymphs. Five out of the 8 sampling sites were positive for at least one virus. This included a site that was positive for both viruses in both years. Detection of these viruses in an area close to a relatively large metropolis presents a greater public health threat than previously thought
    corecore