200 research outputs found
Vibrations and fractional vibrations of rods, plates and Fresnel pseudo-processes
Different initial and boundary value problems for the equation of vibrations
of rods (also called Fresnel equation) are solved by exploiting the connection
with Brownian motion and the heat equation. The analysis of the fractional
version (of order ) of the Fresnel equation is also performed and, in
detail, some specific cases, like , 1/3, 2/3, are analyzed. By means
of the fundamental solution of the Fresnel equation, a pseudo-process ,
with real sign-varying density is constructed and some of its properties
examined. The equation of vibrations of plates is considered and the case of
circular vibrating disks is investigated by applying the methods of
planar orthogonally reflecting Brownian motion within . The composition of
F with reflecting Brownian motion yields the law of biquadratic heat
equation while the composition of with the first passage time of
produces a genuine probability law strictly connected with the Cauchy process.Comment: 33 pages,8 figure
The use of a tailored surgical technique for minimally invasive esophagectomy
ObjectiveUncertainty exists among surgeons as to whether minimally invasive esophagectomy (MIE) is a comparable operation to open esophagectomy (OE). The surgical technique and oncologic dissection should not be degraded when using a minimally invasive approach.MethodsWe reviewed a single hospital’s experience with both OE and MIE. From 2000 to 2010, 257 patients underwent esophagectomy by 1 of 3 surgical techniques: transhiatal, Ivor Lewis, or 3-hole.ResultsOf the 257 patients (median age, 67 years; range, 58–74), 92 underwent MIE. Both groups were comparable in terms of gender, age, comorbidities, surgical technique, and induction chemotherapy and radiotherapy. The overall median follow-up was 29.5 months (range, 9.9–61.5). The MIE group had a significantly shorter operative time (MIE vs OE, 330 vs 365 minutes, P = .04), length of stay (MIE vs OE, 9 vs 12 days, P < .01), intensive care unit admission rate (MIE vs OE, 55% vs 81%, P < .01), intensive care unit length of stay (MIE vs OE, 1 vs 2 days, P < .01), and estimated blood loss (MIE vs OE, 100 vs 400 mL, P < .01). More lymph nodes were harvested in the MIE group than in the OE group (17 vs 11 nodes, P < .01). There were insignificant differences in 30-day mortality (MIE vs OE, 2.2% vs 3.0%; P = .93) and overall survival (P = .19), as well as in the rates of all complications, except pneumonia (MIE vs OE, 2% vs 13%; P = .01).ConclusionsA thoracic surgeon can safely tailor the MIE to a patient’s anatomy and oncologic demands while maintaining equivalent survival
Growth, competition and cooperation in spatial population genetics
We study an individual based model describing competition in space between
two different alleles. Although the model is similar in spirit to classic
models of spatial population genetics such as the stepping stone model, here
however space is continuous and the total density of competing individuals
fluctuates due to demographic stochasticity. By means of analytics and
numerical simulations, we study the behavior of fixation probabilities,
fixation times, and heterozygosity, in a neutral setting and in cases where the
two species can compete or cooperate. By concluding with examples in which
individuals are transported by fluid flows, we argue that this model is a
natural choice to describe competition in marine environments.Comment: 29 pages, 14 figures; revised version including a section with
results in the presence of fluid flow
Development of a new marker system for identifying the complex members of the low-molecular-weight glutenin subunit gene family in bread wheat (Triticum aestivum L.)
Low-molecular-weight glutenin subunits (LMW-GSs) play an important role in determining the bread-making quality of bread wheat. However, LMW-GSs display high polymorphic protein complexes encoded by multiple genes, and elucidating the complex LMW-GS gene family in bread wheat remains challenging. In the present study, using conventional polymerase chain reaction (PCR) with conserved primers and high-resolution capillary electrophoresis, we developed a new molecular marker system for identifying LMW-GS gene family members. Based on sequence alignment of 13 LMW-GS genes previously identified in the Chinese bread wheat variety Xiaoyan 54 and other genes available in GenBank, PCR primers were developed and assigned to conserved sequences spanning the length polymorphism regions of LMW-GS genes. After PCR amplification, 17 DNA fragments in Xiaoyan 54 were detected using capillary electrophoresis. In total, 13 fragments were identical to previously identified LMW-GS genes, and the other 4 were derived from unique LMW-GS genes by sequencing. This marker system was also used to identify LMW-GS genes in Chinese Spring and its group 1 nulli–tetrasomic lines. Among the 17 detected DNA fragments, 4 were located on chromosome 1A, 5 on 1B, and 8 on 1D. The results suggest that this marker system is useful for large-scale identification of LMW-GS genes in bread wheat varieties, and for the selection of desirable LMW-GS genes to improve the bread-making quality in wheat molecular breeding programmes
Population dynamics in compressible flows
Organisms often grow, migrate and compete in liquid environments, as well as
on solid surfaces. However, relatively little is known about what happens when
competing species are mixed and compressed by fluid turbulence. In these
lectures we review our recent work on population dynamics and population
genetics in compressible velocity fields of one and two dimensions. We discuss
why compressible turbulence is relevant for population dynamics in the ocean
and we consider cases both where the velocity field is turbulent and when it is
static. Furthermore, we investigate populations in terms of a continuos density
field and when the populations are treated via discrete particles. In the last
case we focus on the competition and fixation of one species compared to
anotherComment: 16 pages, talk delivered at the Geilo Winter School 201
Platelet activation in the postoperative period after lung transplantation
Objective
During lung transplantation, cells in the pulmonary parenchyma are subjected to ischemia, hypothermic storage, and reperfusion injury. Platelets, whose granular contents include adhesion receptors, chemokines, and coactivating substances that activate inflammatory and coagulant cascades, likely play a critical role in the lung allograft response to ischemia and reperfusion. The platelet response to the pulmonary allograft, however, has never been studied. Here we report significant platelet activation immediately after lung transplantation.
Methods
We performed a prospective cohort study comparing markers of platelet activation in patients undergoing lung transplantation and patients undergoing nontransplant thoracotomy. Plasma levels of soluble P-selectin, soluble CD40 ligand, and platelet–leukocyte conjugates were measured before surgery, after skin closure, and at 6 postoperative hours.
Results
Both soluble P-selectin and soluble CD40 ligand levels increased significantly after lung transplantation but not after thoracotomy. Additionally, platelet–monocyte conjugate fluorescence was significantly higher after lung transplantation than after thoracotomy alone.
Conclusion
These findings suggest that platelet activation is significantly increased after lung transplantation beyond that expected from the postoperative state. The increase in circulating platelet–monocyte conjugates suggests an important interaction between platelets and inflammatory cells. Further research should examine whether platelet activation affects early graft function after lung transplantation
Risk assessment for the spread of Serratia marcescens within dental-unit waterline systems using Vermamoeba vermiformis
Vermamoeba vermiformis is associated with the biofilm ecology of dental-unit waterlines (DUWLs). This study investigated whether V. vermiformis is able to act as a vector for potentially pathogenic bacteria and so aid their dispersal within DUWL systems. Clinical dental water was initially examined for Legionella species by inoculating it onto Legionella selective-medium plates. The molecular identity/profile of the glassy colonies obtained indicated none of these isolates were Legionella species. During this work bacterial colonies were identified as a non-pigmented Serratia marcescens. As the water was from a clinical DUWL which had been treated with Alpron™ this prompted the question as to whether S. marcescens had developed resistance to the biocide. Exposure to Alpron™ indicated that this dental biocide was effective, under laboratory conditions, against S. marcescens at up to 1x108 colony forming units/millilitre (cfu/ml). V. vermiformis was cultured for eight weeks on cells of S. marcescens and Escherichia coli. Subsequent electron microscopy showed that V. vermiformis grew equally well on S. marcescens and E. coli (p = 0.0001). Failure to detect the presence of S. marcescens within the encysted amoebae suggests that V. vermiformis is unlikely to act as a vector supporting the growth of this newly isolated, nosocomial bacterium
The wheat ω-gliadin genes: structure and EST analysis
A survey and analysis is made of all available ω-gliadin DNA sequences including ω-gliadin genes within a large genomic clone, previously reported gene sequences, and ESTs identified from the large wheat EST collection. A contiguous portion of the Gli-B3 locus is shown to contain two apparently active ω-gliadin genes, two pseudogenes, and four fragments of the 3′ portion of ω-gliadin sequences. Comparison of ω-gliadin sequences allows a phylogenetic picture of their relationships and genomes of origin. Results show three groupings of ω-gliadin active gene sequences assigned to each of the three hexaploid wheat genomes, and a fourth group thus far consisting of pseudogenes assigned to the A-genome. Analysis of ω-gliadin ESTs allows reconstruction of two full-length model sequences encoding the AREL- and ARQL-type proteins from the Gli-A3 and Gli-D3 loci, respectively. There is no DNA evidence of multiple active genes from these two loci. In contrast, ESTs allow identification of at least three to four distinct active genes at the Gli-B3 locus of some cultivars. Additional results include more information on the position of cysteines in some ω-gliadin genes and discussion of problems in studying the ω-gliadin gene family
A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients
The celiac disease (CD) is an inflammatory condition characterized by injury to the lining of the small-intestine on exposure to the gluten of wheat, barley and rye. The involvement of gluten in the CD syndrome has been studied in detail in bread wheat, where a set of “toxic” and “immunogenic” peptides has been defined. For wheat diploid species, information on CD epitopes is poor. In the present paper, we have adopted a genomic approach in order to understand the potential CD danger represented by storage proteins in diploid wheat and sequenced a sufficiently large number of cDNA clones related to storage protein genes of Triticum monococcum. Four bona fide toxic peptides and 13 immunogenic peptides were found. All the classes of storage proteins were shown to contain harmful sequences. The major conclusion is that einkorn has the full potential to induce the CD syndrome, as already evident for polyploid wheats. In addition, a complete overview of the storage protein gene arsenal in T. monococcum is provided, including a full-length HMW x-type sequence and two partial HMW y-type sequences
Characterisation and radioimmunotherapy of L19-SIP, an anti-angiogenic antibody against the extra domain B of fibronectin, in colorectal tumour models
Angiogenesis is a characteristic feature of tumours and other disorders. The human monoclonal antibody L19- SIP targets the extra domain B of fibronectin, a marker of angiogenesis expressed in a range of tumours. The aim of this study was to investigate whole body distribution, tumour localisation and the potential of radioimmunotherapy with the L19-small immunoprotein (SIP) in colorectal tumours. Two colorectal tumour models with highly different morphologies, the SW1222 and LS174T xenografts, were used in this study. Localisation and retention of the L19-SIP antibody at tumour vessels was demonstrated using immunohistochemistry and Cy3-labelled L19-SIP. Whole body biodistribution studies in both tumour models were carried out with 125I-labelled L19-SIP. Finally, 131I-labelled antibody was used to investigate the potential of radioimmunotherapy in SW1222 tumours. Using immunohistochemistry, we confirmed extra domain B expression in the tumour vasculature. Immunofluorescence demonstrated localisation and retention of injected Cy3-labelled L19-SIP at the abluminal side of tumour vessels. Biodistribution studies using a 125I-labelled antibody showed selective tumour uptake in both models. Higher recorded values for localisation were found in the SW1222 tumours than in the LS174T (7.9 vs 6.6 %ID g−1), with comparable blood clearance for both models. Based on these results, a radioimmunotherapy study was performed in the SW1222 xenograft using 131I-Labelled L19-SIP (55.5 MBq), which showed selective tumour uptake, tumour growth inhibition and improved survival. Radio- and fluorescence-labelled L19-SIP showed selective localisation and retention at vessels of two colorectal xenografts. Furthermore, 131I-L19-SIP shows potential as a novel treatment of colorectal tumours, and provides the foundation to investigate combined therapies in the same tumour models
- …