111 research outputs found

    Distraction effects of manual texting and voice messaging when approaching pedestrian crossings on urban roads: a driving simulator study

    Get PDF
    The purpose of this study was to assess the impact of texting while driving on driver performance and road safety. In order to achieve this goal, 51 participants took part in a driving simulator study that replicated an urban environment. During the trials, text messages with questions of equal cognitive weight were sent to be answered via 1) a manual texting application or 2) a voice message application. A baseline condition with no secondary task was also tested. Along the simulated route, there were some events that could cause a crash, like pedestrians crossing on-and-off crosswalks. The overall findings indicate that both texting and voice messaging activities while driving have detrimental effects on driving performance and road safety, putting drivers at high risk. The practical applications of the findings of this study are primarily directed at policymakers and stakeholders for the development of effective and targeted campaigns

    Comparing eye-tracking system effectiveness in field and driving simulator studies

    Get PDF
    Background: Several studies have been developed by combining the benefits of eye-tracking systems with driving simulators to simultaneously investigate driving behavior and the potential source of distraction. However, little effort has been spent in terms of eye-tracking validation in the driving simulator environment. Objective: The overall aim of this study is to validate an eye-tracking system within the context of a driving simulation environment by considering a specific urban context application. Methods: Both a field survey and a driving simulation experiment have been developed for a case study located in Rome, Italy. The selected real road sections and events have been reproduced on the driving simulator system and an eye-tracking has been used to record the eye movements both on board of a real vehicle and on the simulator. The eye movements of 14 participants in the field survey and 18 participants in the driving simulation tests, as well as their driving performances, have been collected while approaching an urban intersection and in relation to two specific road events: i) the presence of a speed limit sign and ii) the presence of a crossing pedestrian. Results: Eye tracker parameters and driving performances were compared between the real driving tests and driving simulator experiments in order to validate the eye-tracking system. It has been validated for both the events in terms of duration and distance of the eye fixation. Conclusion: The results demonstrate that the eye-tracking system stands as an effective tool for studies and applications in a virtual reality environment

    Integration of GPR and FWD methods for the assessment of airfield aprons

    Get PDF
    Airport apron relates to an airfield area dedicated to the parking, loading/unloading, refueling and boarding of aircrafts. The standard conventional pavement solution in apron areas is a concrete rigid pavement with jointed concrete slabs, which is due to two main reasons. First, use of concrete technology helps to prevent the potential viscous behaviour of the hot-mixed asphalt solution. This is caused by long-term and permanent loads, especially at high temperatures. Secondly, use of concrete blocks avoids the decay of the wearing course due to the contact with fuel. Although it is relatively easy to design the working features of hardened concrete for apron surfacing purposes (i.e., following the requirements of pavement quality standards), great attention must be paid to the laying stages and construction process. This is to ensure that the laid concrete attains all the designed properties and no premature decays occur. Decays include, inter alia, uncontrolled cracking throughout the concrete slabs. To that effect, role and magnitude of concrete cracking in affecting strength and durability of a rigid pavement subject to external loads is still under debate. Monitoring and assessment of concrete cracking is a complex task, and several theoretical and experimental models have been developed over the past years. To this purpose, ground-truth information were collected using destructive (e.g., concrete sampling) and non-destructive testing (NDT) methods. In this regard, ultrasonic testing (UT) has been widely used for quality control of concrete and damage detection purposes. On the other hand, the falling weight deflectometer (FWD) technology is commonly used for the assessment of stiffness-related parameters of pavement structures. To this effect, mechanical properties of pavements are usually estimated in combination with the geometric information (i.e., thickness of layers/slabs) collected by the ground-penetrating radar (GPR) NDT method. In this study, a demonstration of the potential of integrating ground-penetrating radar (GPR) and falling weight deflectometer (FWD) non-destructive testing (NDT) methods for the assessment of an airfield apron has been given. The main objective was to provide an effective methodology capable to combine multi-source information from FWD, light falling weight deflectometer (LFWD), GPR, pavement construction stages and development of decay over time (available from the airport maintenance company) in order to assess the mechanical properties of an airfield apron affected by early-stage and widespread cracking. The structure of the apron was a rigid pavement with jointed concrete slabs. To this purpose, an airport apron area with dimensions of 190 m Ă— 90 m, paved by a grid of squared concrete slabs with a side length of 7.5 m, was investigated. FWD, LFWD and a ground-coupled multi-frequency GPR system with 600 MHz and 1600 MHz central frequency antennas were used for testing purposes. The results from the integrated application of the above NDTs demonstrated significant potential for the interpretation of distinctive features of the concrete slabs, including cracking, that may affect the mechanical behavior of the pavement

    Photoluminescence dispersion as a probe of structural inhomogeneity in silica

    Full text link
    We report time-resolved photoluminescence spectra of point defects in amorphous silicon dioxide (silica), in particular the decay kinetics of the emission signals of extrinsic Oxygen Deficient Centres of the second type from singlet and directly-excited triplet states are measured and used as a probe of structural inhomogeneity. Luminescence activity in sapphire (α\alpha-Al2_2O3_3) is studied as well and used as a model system to compare the optical properties of defects in silica with those of defects embedded in a crystalline matrix. Only for defects in silica, we observe a variation of the decay lifetimes with emission energy and a time dependence of the first moment of the emission bands. These features are analyzed within a theoretical model with explicit hypothesis about the effect introduced by the disorder of vitreous systems. Separate estimations of the homogenous and inhomogeneous contributions to the measured emission linewidth are obtained: it is found that inhomogeneous effects strongly condition both the triplet and singlet luminescence activities of oxygen deficient centres in silica, although the degree of inhomogeneity of the triplet emission turns out to be lower than that of the singlet emission. Inhomogeneous effects appear to be negligible in sapphire

    The Role of Soil Type in Triggering Shallow Landslides in the Alps (Lombardy, Northern Italy)

    Get PDF
    Shallow landslides due to the soil saturation induced by intense rainfall events are very common in northern Italy, particularly in the Alps and Prealps. They are usually triggered during heavy rainstorms, causing severe damage to property, and sometimes causing casualties. A historical study and analysis of shallow landslides and mud-debris flows triggered by rainfall events in Lombardy was carried out for the period of 1911–2010, over an area of 14,019 km2. In this study, intensity–duration rainfall thresholds have been defined using the frequentist approach, considering some pedological characteristics available in regional soil-related databases, such as the soil region, the textural class, and the dominant soil typological units (STU). The soil-based empirical rainfall thresholds obtained considering the soil regions of the study area were significantly different, with a lower threshold for landslide occurrence in the soil region M1 (Alps), where soils developed over siliceous parent material, with respect to the whole study area and the soil region M2 (Prealps), where soils developed over calcareous bedrocks. Furthermore, by considering textural classes, the curves were differentiated, with coarse-textured soils found more likely to triggerlandslides than fine soils. Finally, considering both texture and main soil groups, given the same rainfall duration, the rainfall amount and intensity needed to initiate a landslide increased in the following order: “coarse-skeletal” Cambisols < Umbrisols < Podzols < “fine” Cambisols. The results of this study highlighted the relevant role of pedological conditioning factors in differentiating the activation of rainfall-induced shallow landslides in a definite region. The information on soils can be used to define more precise rainfall–pedological thresholds than empirical thresholds based solely on meteorological conditions, even when they are locally defined. This knowledge is crucial for forecasting and preventing geo-hydrological processes and in developing better warning strategies to mitigate risks and to reduce socio-economic damage

    BIM for infrastructure: an efficient process to achieve 4D and 5D digital dimensions

    Get PDF
    Introduction of the Building Information Modeling (BIM) approach in Civil Engineering practices allows a design optimization through both an improved control of all the components of a project and an increased efficiency in the collaboration between all professionals involved. In Italy, major attention is being paid by scientists and professionals on this subject area, especially after the implementation of the national law DM 560/2017. This document will gradually rule the integration of BIM-based procedures for contractors in major public tenders. The present paper aims to propose a methodology for implementing an optimization dynamic model of time (4D) and costs (5D) across different project phases. To achieve this aim, the process relies on several authoring tools and 4D/5D modeling software, capable to incorporate a variety of project data in a unique and shared environment. The most effective methodology to maximize the interoperability between various codes will be presented. In this regard, a dynamic model involving an optimizationoriented approach for both the quantity surveying and the definition of the design management timeline is introduced. It is important to emphasize that these aspects are two of the major issues for the evaluation criteria in a civil engineering project. Also, this bidirectional process allows for a more accurate estimation of project costs as well as to achieve an optimized timeline of construction activities. Finally, it worth reminding that in case of constrained changes during the design phase, a dynamic model permits to effectively reiterate the process with a significant reduction of the overall computational time

    Testing sentinel-1 SAR interferometry data for airport runway monitoring: a geostatistical analysis

    Get PDF
    Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) techniques are gaining momentum in the assessment and health monitoring of infrastructure assets. Amongst others, the Persistent Scatterers Interferometry (PSI) technique has proven to be viable for the long-term evaluation of ground scatterers. However, its effectiveness as a routine tool for certain critical application areas, such as the assessment of millimetre-scale differential displacements in airport runways, is still debated. This research aims to demonstrate the viability of using medium-resolution Copernicus ESA Sentinel-1A (C-Band) SAR products and their contribution to improve current maintenance strategies in case of localised foundation settlements in airport runways. To this purpose, “Runway n.3” of the “Leonardo Da Vinci International Airport” in Fiumicino, Rome, Italy was investigated as an explanatory case study, in view of historical geotechnical settlements affecting the runway area. In this context, a geostatistical study is developed for the exploratory spatial data analysis and the interpolation of the Sentinel-1A SAR data. The geostatistical analysis provided ample information on the spatial continuity of the Sentinel 1 data in comparison with the high-resolution COSMO-SkyMed data and the ground-based topographic levelling data. Furthermore, a comparison between the PSI outcomes from the Sentinel-1A SAR data—interpolated through Ordinary Kriging—and the ground-truth topographic levelling data demonstrated the high accuracy of the Sentinel 1 data. This is proven by the high values of the correlation coefficient (r = 0.94), the multiple R-squared coefficient (R2 = 0.88) and the Slope value (0.96). The results of this study clearly support the effectiveness of using Sentinel-1A SAR data as a continuous and long-term routine monitoring tool for millimetre-scale displacements in airport runways, paving the way for the development of more efficient and sustainable maintenance strategies for inclusion in next generation Airport Pavement Management Systems (APMSs)

    Results from shallow geophysical investigations in the northwestern sector of the island of Malta

    Get PDF
    We performed geophysical investigations in the northwestern sector of the island of Malta to reconstruct velocity-depth models and provide shear-wave velocity profiles. We have chosen two sites, one located in Rabat (Malta) and another in the Golden Bay area. We used both active (seismic and electrical 2D-tomography, Multichanel Analysis of Surface Waves – MASW) and passive (2D arrays and single-station measurements using ambient noise) geophysical methods. Consistently with previous studies performed in this part of Malta, we have found that both sites are characterised by site resonance in the frequency range 1-2 Hz as an effect of the local lithostratigraphic succession that shows an impedance contrast at about 60-90 m depth. This resonance effect can have important implications on both seismic hazard as well as seismic risk evaluation of the region since the amplified frequency range coincides with the resonance frequencies typical of 5–10 storey buildings which are very diffuse in the Maltese Islands, especially after intense recent urbanization.Published41-484T. Sismologia, geofisica e geologia per l'ingegneria sismicaJCR Journa

    The free license codes as decision support system (DSS) for the emergency planning to simulate radioactive releases in case of accidents in the new generation energy plants

    Get PDF
    The radiological risk is related to a wide range of activities, beginning with the medical and military ones and including those connected to the industrial and research activities such as nuclear fusion. A valid tool to predict the consequences of the accidents and reduce the risk is represented by computing systems that allow modeling the evolution of a possible release of radioactive materials over time and space. In addition to proprietary codes there are free license codes, like Hot-Spot, that allow providing a set of tools to simulate diffusion in case of accidents involving radioactive materials and analyze the safety and security of the facilities in which the radioactive material is manipulated. The case studies scenario’s consists in two simulations accidents scenario the first to biomass plant and the second at nuclear fission plant. The simulation of the radioactive contamination have been conducted with the code HOT SPOT, a free license code. The results of the simulation and data discussion will be presented in this work by the authors

    Efficacy and safety of venous angioplasty of the extracranial veins for multiple sclerosis. Brave Dreams Study (Brain Venous Drainage Exploited Against Multiple Sclerosis): study protocol for a randomized controlled trial.

    Get PDF
    BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a disabling progressive course. Chronic cerebrospinal venous insufficiency (CCSVI) has recently been described as a vascular condition characterized by restricted venous outflow from the brain, mainly due to blockages of the internal jugular and azygos veins. Despite a wide variability among studies, it has been found to be associated with MS. Data from a few small case series suggest possible improvement of the clinical course and quality of life by performing percutaneous balloon angioplasty (PTA) of the stenotic veins.Study design and methodsThis is a multicenter, randomized, parallel group, blinded, sham-controlled trial to assess the efficacy and safety of PTA. Participants with relapsing remitting MS or secondary progressive MS and a sonographic diagnosis of CCSVI will be enrolled after providing their informed consent. Each participant will be centrally randomized to receive catheter venography and PTA or catheter venography and sham PTA. Two primary end points with respect to efficacy at 12 months are (1) a combined end point obtained through the integration of five functional indicators, walking, balance, manual dexterity, bladder control, and visual acuity, objectively measured by instruments; and (2) number of new brain lesions measured by T2-weighted MRI sequences. Secondary end points include annual relapse rate, change in Expanded Disability Status Scale score, proportion of patients with zero, one or two, or more than two relapses; fatigue; anxiety and depression; general cognitive state; memory/attention/calculus; impact of bladder incontinence; and adverse events. Six hundred seventy-nine patients will be recruited. The follow-up is scheduled at 12 months. Patients, treating neurologists, trained outcome assessors, and the statistician in charge of data analysis will be masked to the assigned treatment. DISCUSSION: The study will provide an answer regarding the efficacy of PTA on patients' functional disability in balance, motor, sensory, visual and bladder function, cognitive status, and emotional status, which are meaningful clinical outcomes, beyond investigating the effects on inflammation. In fact, an important part of patients' expectations, sustained and amplified by anecdotal data, has to do precisely with these functional aspects.Trial registrationClinicaltrials.gov NCT01371760
    • …
    corecore