40 research outputs found

    Estimation of Signal Parameters using Deep Convolutional Neural Networks

    Full text link
    This paper introduces a Deep Learning approach for signal parameter estimation in the context of wireless channel modeling. Our work is capable of multidimensional parameter estimation from a signal containing an unknown number of paths. The signal parameters are estimated relative to a predefined grid, providing quasi grid-free, hence, more accurate estimates than previous grid-limited approaches. It requires no prior knowledge of the number of paths, giving it an advantage in terms of complexity compared to existing solutions. Along with the description, we provide an initial performance analysis and a comparison with State-of-the-Art techniques and discuss future research directions

    Measurement Testbed for Radar and Emitter Localization of UAV at 3.75 GHz

    Full text link
    This paper presents an experimental measurement platform for the research and development of unmanned aerial vehicles (UAVs) localization algorithms using radio emission and reflectivity. We propose a cost-effective, flexible testbed made from commercial off-the-shelf (COTS) devices to allow academic research regarding the upcoming integration of UAV surveillance in existing mobile radio networks in terms of integrated sensing and communication (ISAC). The system enables nanosecond-level synchronization accuracy and centimeter-level positioning accuracy for multiple distributed sensor nodes and a mobile UAV-mounted node. Results from a real-world measurement in a 16 km2 urban area demonstrate the system's performance with both emitter localization as well as with the radar setup

    Budding transitions of fluid-bilayer vesicles: the effect of area-difference elasticity

    Get PDF
    Budding and vesiculation are prominent shape transformations of fluid lipid-bilayer vesicles. We discuss these transitions within the context of a curvature model which contains two types of bending energy. In addition to the usual local curvature elasticity κ, we include the effect of a relative areal stretching of the two monolayers. This area-difference elasticity leads to an effective nonlocal curvature energy characterized by another parameter κ¯. We argue that the two contributions to the curvature energy are typically comparable in magnitude. The model interpolates smoothly between the spontaneous-curvature model (κ¯=0) and the bilayer-couple model (κ¯→∞), discussed previously in the literature. Conceptually, this model is not new; however, neither its consequences nor its relation to experiment has previously been explored in detail. In particular, budding is discontinuous (first order) for small κ¯ but changes via a tricritical point to continuous (second order) for large κ¯. The order of the budding transition depends on both the ratio κ¯/κ (which is a material parameter) and the initial area difference between the inner and outer monolayers (which can be modified by appropriate treatment of the vesicle). Estimates suggest that, under typical laboratory conditions, the budding process should be discontinuous, in apparent disagreement with some recent experiments. Possible reasons for this discrepancy are discussed. We propose, in particular, that hysteretic effects are important and that the observed behavior may reflect a spinodal instability

    Periodic Lamellipodial Contractions Correlate with Rearward Actin Waves

    Get PDF
    AbstractCellular lamellipodia bind to the matrix and probe its rigidity through forces generated by rearward F-actin transport. Cells respond to matrix rigidity by moving toward more rigid matrices using an unknown mechanism. In spreading and migrating cells we find local periodic contractions of lamellipodia that depend on matrix rigidity, fibronectin binding and myosin light chain kinase (MLCK). These contractions leave periodic rows of matrix bound β3-integrin and paxillin while generating waves of rearward moving actin bound α-actinin and MLCK. The period between contractions corresponds to the time for F-actin to move across the lamellipodia. Shortening lamellipodial width by activating cofilin decreased this period proportionally. Increasing lamellipodial width by Rac signaling activation increased this period. We propose that an actin bound, contraction-activated signaling complex is transported locally from the tip to the base of the lamellipodium, activating the next contraction/extension cycle

    Dynamic Phase Transitions in Cell Spreading

    Full text link
    We monitored isotropic spreading of mouse embryonic fibroblasts on fibronectin-coated substrates. Cell adhesion area versus time was measured via total internal reflection fluorescence microscopy. Spreading proceeds in well-defined phases. We found a power-law area growth with distinct exponents a_i in three sequential phases, which we denote basal (a_1=0.4+-0.2), continous (a_2=1.6+-0.9) and contractile (a_3=0.3+-0.2) spreading. High resolution differential interference contrast microscopy was used to characterize local membrane dynamics at the spreading front. Fourier power spectra of membrane velocity reveal the sudden development of periodic membrane retractions at the transition from continous to contractile spreading. We propose that the classification of cell spreading into phases with distinct functional characteristics and protein activity patterns serves as a paradigm for a general program of a phase classification of cellular phenotype. Biological variability is drastically reduced when only the corresponding phases are used for comparison across species/different cell lines.Comment: 4 pages, 5 figure

    Cooperative Passive Coherent Location: A Promising 5G Service to Support Road Safety

    Full text link
    5G promises many new vertical service areas beyond simple communication and data transfer. We propose CPCL (cooperative passive coherent location), a distributed MIMO radar service, which can be offered by mobile radio network operators as a service for public user groups. CPCL comes as an inherent part of the radio network and takes advantage of the most important key features proposed for 5G. It extends the well-known idea of passive radar (also known as passive coherent location, PCL) by introducing cooperative principles. These range from cooperative, synchronous radio signaling, and MAC up to radar data fusion on sensor and scenario levels. By using software-defined radio and network paradigms, as well as real-time mobile edge computing facilities intended for 5G, CPCL promises to become a ubiquitous radar service which may be adaptive, reconfigurable, and perhaps cognitive. As CPCL makes double use of radio resources (both in terms of frequency bands and hardware), it can be considered a green technology. Although we introduce the CPCL idea from the viewpoint of vehicle-to-vehicle/infrastructure (V2X) communication, it can definitely also be applied to many other applications in industry, transport, logistics, and for safety and security applications

    eadf: representation of far-field antenna responses in Python

    Get PDF
    Understanding and analysis of antennas is crucial for the development of modern telecommunication technologies, like 5G or massive MIMO. Research in this area has the need for software to measure, analyze and test antenna systems. For instance, one needs a convenient way to transform large amounts of antenna measurement data into a concise representation. The herein described eadf package aims at providing this functionality. On top of that, it offers routines to interpolate the beam-pattern of an antenna as well as compressing it in spatial frequency domain. As such, it can be used for the development of high resolution parameter estimation algorithms and analysis of antenna beam-patterns. In summary, the package provides a flexible and extensible framework for dealing with antennas
    corecore