241 research outputs found

    Wavelet transform modulus maxima based fractal correlation analysis

    Full text link
    The wavelet transform modulus maxima (WTMM) used in the singularity analysis of one fractal function is extended to study the fractal correlation of two multifractal functions. The technique is developed in the framework of joint partition function analysis (JPFA) proposed by Meneveau et al. [1] and is shown to be equally effective. In addition, we show that another leading approach developed for the same purpose, namely, relative multifractal analysis, can be considered as a special case of JPFA at a particular parameter setting.Comment: 18 pgs, 5 fig

    Serum S100A8/A9 and S100A12 Levels in Children With Polyarticular Forms of Juvenile Idiopathic Arthritis: Relationship to Maintenance of Clinically Inactive Disease During Anti–Tumor Necrosis Factor Therapy and Occurrence of Disease Flare After Discontinuation of Therapy

    Get PDF
    © 2018, American College of Rheumatology Objective: To determine the relationship between serum levels of S100A8/A9 and S100A12 and the maintenance of clinically inactive disease during anti–tumor necrosis factor (anti-TNF) therapy and the occurrence of disease flare following withdrawal of anti-TNF therapy in patients with polyarticular forms of juvenile idiopathic arthritis (JIA). Methods: In this prospective, multicenter study, 137 patients with polyarticular-course JIA whose disease was clinically inactive while receiving anti-TNF therapy were enrolled. Patients were observed for an initial 6-month phase during which anti-TNF treatment was continued. For those patients who maintained clinically inactive disease over the 6 months, anti-TNF was withdrawn and they were followed up for 8 months to assess for the occurrence of flare. Serum S100 levels were measured at baseline and at the time of anti-TNF withdrawal. Spearman\u27s rank correlation test, Mann-Whitney U test, Kruskal-Wallis test, receiver operating characteristic (ROC) curve, and Kaplan-Meier survival analyses were used to assess the relationship between serum S100 levels and maintenance of clinically inactive disease and occurrence of disease flare after anti-TNF withdrawal. Results: Over the 6-month initial phase with anti-TNF therapy, the disease state reverted from clinically inactive to clinically active in 24 (18%) of the 130 evaluable patients with polyarticular-course JIA; following anti-TNF withdrawal, 39 (37%) of the 106 evaluable patients experienced a flare. Serum levels of S100A8/A9 and S100A12 were elevated in up to 45% of patients. Results of the ROC analysis revealed that serum S100 levels did not predict maintenance of clinically inactive disease during anti-TNF therapy nor did they predict disease flare after treatment withdrawal. Elevated levels of S100A8/A9 were not predictive of the occurrence of a disease flare within 30 days, 60 days, 90 days, or 8 months following anti-TNF withdrawal, and elevated S100A12 levels had a modest predictive ability for determining the risk of flare within 30, 60, and 90 days after treatment withdrawal. Serum S100A12 levels at the time of anti-TNF withdrawal were inversely correlated with the time to disease flare (r = −0.36). Conclusion: Serum S100 levels did not predict maintenance of clinically inactive disease or occurrence of disease flare in patients with polyarticular-course JIA, and S100A12 levels were only moderately, and inversely, correlated with the time to disease flare

    The impact of solar and atmospheric parameter uncertainties on the measurement of θ13\theta_{13} and δ\delta

    Full text link
    We present in this paper the analysis of the measurement of the unknown PMNS parameters θ13\theta_{13} and δ\delta at future LBL facilities performing complete three parameters fits, each time fully including in the fit one of the atmospheric and solar oscillation parameters within its present (future) error. We show that, due to the presence of degeneracies, present uncertainties on θ23\theta_{23} and Δm232\Delta m^2_{23} worsen significantly the precision on (θ13\theta_{13},δ\delta) at future LBL experiments. Only if a precision on the atmospheric parameters at least similar to what expected at T2K-I is reached, then the sensitivities to θ13\theta_{13} and δ\delta that have been presented in the literature for many facilities (where θ23\theta_{23} and Δm232\Delta m^2_{23} are generally considered as fixed external inputs) can indeed be almost recovered.On the other hand, the impact on this measurement of the uncertainties on the solar parameters, θ12\theta_{12} and Δm122\Delta m^2_{12} is already negligible. Our analysis has been performed using three reference setups: the SPL Super-Beam and the standard low-γ\gamma β\beta-Beam, both aiming toward a Mton Water \v{C}erenkov detector located at L=130 km; the 50 GeV Neutrino Factory with a 40 kton Magnetized Iron Detector to look for the ``golden channel'' νeνμ\nu_e \to \nu_\mu with baseline L=3000 km and a 4 kton Emulsion Cloud Chamber to look for the ``silver channel'' νeντ\nu_e \to \nu_\tau with baseline L=732 km.Comment: 42 pages, 64 figures. Comments added, final version to appear in EPJ

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Measurement of D+- and D0 production in deep inelastic scattering using a lifetime tag at HERA

    Get PDF
    The production of D-+/-- and D-0-mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb(-1). The measurements cover the kinematic range 5 < Q(2) < 1000 GeV2, 0.02 < y < 0.7, 1.5 < p(T)(D) < 15 GeV and |eta(D)| < 1.6. Combinatorial background to the D-meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD, which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F-2(c (c) over bar), to the proton structure function, F-2

    The ALICE Transition Radiation Detector: Construction, operation, and performance

    Get PDF
    The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection. (c) 2017 CERN for the benefit of the Authors. Published by Elsevier B.V

    Planck intermediate results I : Further validation of new Planck clusters with XMM-Newton

    Get PDF
    Peer reviewe
    corecore