21 research outputs found

    Grid-VirtuE: a layered architecture for grid virtual enterprises

    Get PDF
    A grid virtual enterprise is a community of independent enterprises concerned with a particular sector of the economy. Its members (nodes) are small or medium size enterprises (SME) engaged in bilateral transactions. An important principle of a grid virtual enterprise is the lack of any global "guiding force", with each member of the community making its own independent decisions. In this paper we describe Grid-VirtuE, a three-layer architecture for grid virtual enterprises. The top layer of the architecture, representing its ultimate purpose, is an environment in which grid virtual enterprises can be modeled and implemented. This layer is supported by middleware infrastructure for grids, providing a host of grid services, such as node-to-node communication, bilateral transactions, and data collection. The bottom layer is essentially a distributed data warehouse for storing, sharing and analyzing the large amounts of data generated by the grid. Among other functionalities, the warehouse handles the dissemination of data among the members of the grid; it confronts issues of data magnitude with an aging mechanism that aggregates old data at a lower level of detail; and it incorporates privacy-preserving features that retain the confidentiality of individual members. Warehouse information is also used for data and process mining, aimed at analyzing the behavior of the enterprise, and subsequently inducing evolutionary changes that will improve its performance.A grid virtual enterprise is a community of independent enterprises concerned with a particular sector of the economy. Its members (nodes) are small or medium size enterprises (SME) engaged in bilateral transactions. An important principle of a grid virtual enterprise is the lack of any global "guiding force", with each member of the community making its own independent decisions. In this paper we describe Grid-VirtuE, a three-layer architecture for grid virtual enterprises. The top layer of the architecture, representing its ultimate purpose, is an environment in which grid virtual enterprises can be modeled and implemented. This layer is supported by middleware infrastructure for grids, providing a host of grid services, such as node-to-node communication, bilateral transactions, and data collection. The bottom layer is essentially a distributed data warehouse for storing, sharing and analyzing the large amounts of data generated by the grid. Among other functionalities, the warehouse handles the dissemination of data among the members of the grid; it confronts issues of data magnitude with an aging mechanism that aggregates old data at a lower level of detail; and it incorporates privacy-preserving features that retain the confidentiality of individual members. Warehouse information is also used for data and process mining, aimed at analyzing the behavior of the enterprise, and subsequently inducing evolutionary changes that will improve its performance.Monograph's chapter

    Drug delivery in intervertebral disc degeneration and osteoarthritis : Selecting the optimal platform for the delivery of disease-modifying agents

    Get PDF
    Acknowledgement We would like to acknowledge Prof. Gerjo Van Osch and prof Molly Stevens for their careful and critical revision of the manuscript. We wish to thank all principal investigators of the TargetCaRe consortium for their enormous support during the years: Prof G. van Osch. Prof. Mauro Alini, Prof. Bruce Caterson, Dr. Alan Chan, Prof. Cosimo De Bari, Prof. Ron Heeren, Prof. Kennet Howard, Prof. Marcelle Machluf, Prof. Molly M. Stevens and Prof. Avner Yayon. This work was supported by European Union's Horizon 2020 Research And Innovation Programme under Marie Sklodowska Curie Grant agreement no. 642414.Peer reviewedproofPublisher PD

    Preparation, realization and chemical, physical and biological characterization of polymeric scaffolds for the production of patches used in the cardiovascular sector

    No full text
    The main goal of this project was the development and characterization of highly interconnected porous scaffolds for cardiac tissue regeneration. Highly interconnected pores promote cell migration and exchange of nutrients. Different biopolymer were investigated, including polycaprolactone (PCL) and poly(glycerol - sebacate) (PGS). Electrospinning and lyophilisation were used to develop biodegradable cardiac patches with different porosities. In addition, PGS-PCL foams were obtained via lyophilisation with different porosities. In addition, highly interconnect porous PGS structures were obtained using a PVA template which was prepared prior via lyophilisation. Furthermore, PGS-PCL electrospun fibrous mat were imprinted with topographical cues using a laser printed silicon wafer to enhance cell guidance. The prepared scaffolds were investigated and characterized by several analytical techniques. Microstructural analysis, physico-chemical properties and material degradation behavior in PBS were investigated. Moreover cell culture studies were performed to study the effect of the topographical cues on the cell behavior

    Middle and late Miocene calcareous nannofossil biostratigraphy from equatorial Indian and Pacific Oceans

    No full text
    Selected calcareous nannofossils were investigated by means of quantitative methods in middle and upper Miocene sediments from the tropical Indian Ocean (ODP Leg 115) and equatorial Pacific Ocean (DSDP Leg 85, ODP Legs 130 and 138). Our goal was to test the reliability of the classic biohorizons used in the standard zonations of Martini (1971) and Bukry (1973) and, possibly, to improve biostratigraphic resolution in the Miocene. In a time interval of about 8 m.y., from the last occurrence (LO) of S. heteromorphus (~13.6 Ma) to the LO of D. quinqueramus (~5.5 Ma), a total 37 events were investigated, using both the conventional and some additional markers proposed in the literature. At least 17 of these events proved to be distinct biostratigraphic correlation lines between the two considered areas. This integrated biostratigraphic framework increases the biostratigraphic resolution in the middle-upper Miocene interval (of the order of about 0.5 m.y). All the investigated events were tied to the geomagnetic polarity time scale (GPTS) and compared to biomagnetostratigraphy from mid-latitude North Atlantic Site 94-608 (Olafsson, 1991; Gartner, 1992), thus obtaining further information about the biostratigraphic and biochronologic reliability of the investigated events and a significant improvement of the available nannofossil biomagnetostratigraphic model for the middle and late Miocene
    corecore