32 research outputs found

    The Nanos3-3′UTR Is Required for Germ Cell Specific NANOS3 Expression in Mouse Embryos

    Get PDF
    BACKGROUND: The regulation of gene expression via a 3' untranslated region (UTR) plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present. METHODOLOGY/PRINCIPAL FINDINGS: In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells. CONCLUSIONS/SIGNIFICANCE: Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo

    Interleukin-15 augments oxidative metabolism and fungicidal activity of human monocytes against Paracoccidioides brasiliensis

    Full text link
    Interleukin (IL)-15 is a pleiotropic cytokine that regulates the proliferation and survival of many cell types. IL-15 is produced by monocytes and macrophages against infectious agents and plays a pivotal role in innate and adaptive immune responses. This study analyzed the effect of IL-15 on fungicidal activity, oxidative metabolism and cytokine production by human monocytes challenged in vitro with Paracoccidioides brasiliensis (Pb18), the agent of paracoccidioidomycosis. Peripheral blood monocytes were pre-incubated with IL-15 and then challenged with Pb18. Fungicidal activity was assessed by viable fungi recovery from cultures after plating on brain-heart infusion-agar. Superoxide anion (O2-), hydrogen peroxide (H2O2), tumour necrosis factor-alpha (TNF-α), IL-6, IL-15 and IL-10 production by monocytes were also determined. IL-15 enhanced fungicidal activity against Pb18 in a dose-dependent pattern. This effect was abrogated by addition of anti-IL-15 monoclonal antibody. A significant stimulatory effect of IL-15 on O2- and H2O2 release suggests that fungicidal activity was dependent on the activation of oxidative metabolism. Pre-treatment of monocytes with IL-15 induced significantly higher levels of TNF-α, IL-10 and IL-15 production by cells challenged with the fungus. These results suggest a modulatory effect of IL-15 on pro and anti-inflammatory cytokine production, oxidative metabolism and fungicidal activity of monocytes during Pb18 infection

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    A consistent experimental protocol for the strain rate characterization of thermoplastic fabrics

    No full text
    International audienceThis paper introduces an experimental procedure aiming at performing a consistent mechanical characterization of textile composites behavior, under static and dynamic loadings, and particularly their macroscopic strain rate-dependent mechanisms. The procedure includes the design and validation of a reduced specimen adapted to dynamic testing, which guarantees the consistency of the identified macroscopic properties under a wide range of strain rates. An interrupted high speed tensile apparatus was also developed to investigate the strain rate sensitivity of the nonlinear constitutive behavior from math formula = 10 − 4 s − 1 to 102 s − 1. The originality of this experimental device lies in its ability to stop high speed loadings before ultimate failure, at adjustable, accurate strain levels. Finally, an extensive characterization campaign was performed. Results reveal a high strain rate dependency of the linear and nonlinear behavior. The procedure therefore generates consistent characterization data that may trustworthily be used for modeling purposes

    Significant Association Between Human Osteosarcoma and Simian Virus 40

    No full text
    BACKGROUND: Simian virus 40 (SV40) has been considered to be an oncogenic viral agent in the development of osteosarcoma (OS), which to the authors\u2019 knowledge continues to be of unknown etiology. METHODS: In the current study, serum samples from patients with OS were investigated with an indirect enzyme-linked immunoadsorbent assay (ELISA) to test for the presence of immu- noglobulin G antibodies, which react with SV40 antigens. In ELISA, SV40 antigens were represented by 2 synthetic polypeptides that mimic epitopes of the viral capsid proteins 1 to 3. Additional sera from patients with breast cancer and undifferentiated nasopharyn- geal carcinoma as well as healthy subjects were the controls. RESULTS: Immunologic results suggested that antibodies that react with SV40 mimotopes were more prevalent (44%) in serum samples from patients with OS compared with healthy subjects (17%). The difference in prevalence between these cohorts was statistically significant (P<.001). It is interesting to note that in the patients with OS, significance indicated the difference between OS versus breast cancer (44% vs 15%; P<.001) and OS versus undifferentiated nasopharyngeal carcinoma (44% vs 25%; P<.05). CONCLUSIONS: The data from the current study indicate an association between OS and SV40. These data could be transferred to clinical applications for innovative therapies to address SV40-positive O
    corecore