658 research outputs found

    Circumstellar dust distribution in systems with two planets in resonance

    Full text link
    We investigate via numerical modeling the effects of two planets locked in resonance, and migrating outward, on the dust distribution of the natal circumstellar disk. We aim to test whether the dust distribution exhibits peculiar features arising from the interplay among the gravitational perturbations of the planets in resonance, the evolution of the gas, and its influence on the dust grains' dynamics. We focus on the 3:2 and 2:1 resonance, where the trapping may be caused by the convergent migration of a Jupiter- and Saturn-mass planet, preceding the common gap formation and ensuing outward (or inward) migration. Models show that a common gap also forms in the dust component -- similarly to what a single, more massive planet would generate -- and that outward migration leads to a progressive widening of the dust gap and to a decoupling from the gas gap. As the system evolves, a significantly wider gap is observed in the dust distribution, which ceases to overlap with the gas gap in the inner disk regions. At the outer edge of the gas gap, outward migration of the planets produces an over-density of dust particles, which evolve differently in the 3:2 and 2:1 resonances. For the 3:2, the dust trap at the gap's outer edge is partly efficient and a significant fraction of the grains filters through the gap. For the 2:1 resonance, the trap is more efficient and very few grains cross the gap, while the vast majority accumulate at the outer edge of the gap.Comment: 16 pages, 12 figures. Accepted for publicatio

    Correlation Plenoptic Imaging With Entangled Photons

    Full text link
    Plenoptic imaging is a novel optical technique for three-dimensional imaging in a single shot. It is enabled by the simultaneous measurement of both the location and the propagation direction of light in a given scene. In the standard approach, the maximum spatial and angular resolutions are inversely proportional, and so are the resolution and the maximum achievable depth of focus of the 3D image. We have recently proposed a method to overcome such fundamental limits by combining plenoptic imaging with an intriguing correlation remote-imaging technique: ghost imaging. Here, we theoretically demonstrate that correlation plenoptic imaging can be effectively achieved by exploiting the position-momentum entanglement characterizing spontaneous parametric down-conversion (SPDC) photon pairs. As a proof-of-principle demonstration, we shall show that correlation plenoptic imaging with entangled photons may enable the refocusing of an out-of-focus image at the same depth of focus of a standard plenoptic device, but without sacrificing diffraction-limited image resolution.Comment: 12 pages, 5 figure
    • …
    corecore