523 research outputs found
Random Access in Massive MIMO by Exploiting Timing Offsets and Excess Antennas
Massive MIMO systems, where base stations are equipped with hundreds of
antennas, are an attractive way to handle the rapid growth of data traffic. As
the number of user equipments (UEs) increases, the initial access and handover
in contemporary networks will be flooded by user collisions. In this paper, a
random access protocol is proposed that resolves collisions and performs timing
estimation by simply utilizing the large number of antennas envisioned in
Massive MIMO networks. UEs entering the network perform spreading in both time
and frequency domains, and their timing offsets are estimated at the base
station in closed-form using a subspace decomposition approach. This
information is used to compute channel estimates that are subsequently employed
by the base station to communicate with the detected UEs. The favorable
propagation conditions of Massive MIMO suppress interference among UEs whereas
the inherent timing misalignments improve the detection capabilities of the
protocol. Numerical results are used to validate the performance of the
proposed procedure in cellular networks under uncorrelated and correlated
fading channels. With UEs that may simultaneously become active
with probability 1\% and a total of frequency-time codes (in a given
random access block), it turns out that, with antennas, the proposed
procedure successfully detects a given UE with probability 75\% while providing
reliable timing estimates.Comment: 30 pages, 6 figures, 1 table, submitted to Transactions on
Communication
Random Access in Uplink Massive MIMO Systems: How to exploit asynchronicity and excess antennas
Massive MIMO systems, where the base stations are equipped with hundreds of
antennas, are an attractive way to handle the rapid growth of data traffic. As
the number of users increases, the initial access and handover in contemporary
networks will be flooded by user collisions. In this work, we propose a random
access procedure that resolves collisions and also performs timing, channel,
and power estimation by simply utilizing the large number of antennas
envisioned in massive MIMO systems and the inherent timing misalignments of
uplink signals during network access and handover. Numerical results are used
to validate the performance of the proposed solution under different settings.
It turns out that the proposed solution can detect all collisions with a
probability higher than 90%, at the same time providing reliable timing and
channel estimates. Moreover, numerical results demonstrate that it is robust to
overloaded situations.Comment: submitted to IEEE Globecom 2016, Washington, DC US
Why Companies Do Not Renew Their EMAS Registration? An Exploratory Research
The Eco-Management and Audit Scheme (EMAS) is the official Environmental Management System (EMS) issued by the European Union (EU). Italy is the country where EMAS is most widespread, accounting for over 1000 registered organizations. Since entry into the force of the Regulation in 1997, the number of registrations has constantly grown until 2008, when the figures started to drop. The phenomena are due to both the decrease of the annual registration rate and the lack of renewals. According to the Italian Institute for Environmental Protection and Research (ISPRA), in recent years, an increasing number of organizations decided to withdraw from EMAS registration. The purpose of this paper is to analyze the reasons of this negative trend. The first step consisted of a literature review concerning the main barriers, difficulties, and costs incurred by EMAS-registered organizations. Subsequently, this information was integrated with data about the evolution of EMAS registrations and the results of a previous survey, which involved the entire population of registered firms. The present exploratory research highlighted economic and operational domains concerning the cancellation trends that deserve a deeper investigation, which will be conducted through a questionnaire addressed to Italian firms that did not renew the registration in the last lustrum. The intended output will allow us to identify stakeholders' priority intervention areas in order to suggest an operative strategy to reduce EMAS cancellation rates, addressed to Member States (MS) Competent Bodies
Periodic Preamble-Based Frequency Recovery in OFDM Receivers Plagued by I/Q Imbalance
The direct conversion receiver (DCR) architecture has received much attention in the last few years as an effective means to obtain user terminals with reduced cost, size, and power consumption. A major drawback of a DCR device is the possible insertion of I/Q imbalances in the demodulated signal, which can seriously degrade the performance of conventional synchronization algorithms. In this paper, we investigate the problem of carrier frequency offset (CFO) recovery in an OFDM receiver equipped with a DCR front-end. Our approach is based on maximum likelihood (ML) arguments and aims at jointly estimating the CFO, the useful signal component, and its mirror image. In doing so, we exploit knowledge of the pilot symbols transmitted within a conventional repeated training preamble appended in front of each data packet. Since the exact ML solution turns out to be too complex for practical purposes, we propose two alternative schemes which can provide nearly optimal performance with substantial computational saving. One of them provides the CFO in closed-form, thereby avoiding any grid-search procedure. The accuracy of the proposed methods is assessed in a scenario compliant with the 802.11a WLAN standard. Compared with existing solutions, the novel schemes achieve improved performance at the price of a tolerable increase of the processing load
- …