14 research outputs found

    Postoperative Immune Suppression in Visceral Surgery: Characterisation of an Intestinal Mouse Model

    Get PDF
    Background: Postoperatively acquired immune dysfunction is associated with a higher mortality rate in case of septic complications. As details of this severe clinical problem are still unknown, animal models are essential to characterise the mechanisms involved. Methods: Mice were laparotomised and the small intestine was pressed smoothly in antegrade direction. For extension of trauma, the intestine was manipulated three times consecutively. Following this, the ex vivo cytokine release of splenocytes was determined. The degree of surgical trauma was analysed by detection of HMGB1 and IL-6 in serum and by neutrophil staining in the muscularis mucosae. Results: We adapted the previously described animal model of intestinal manipulation to provide a model of surgically induced immune dysfunction. Following intestinal manipulation, the mice showed elevated serum levels of HMGB1 and IL-6 and increased infiltration of granulocytes into the muscularis mucosae. Ex vivo cytokine release by splenocytes was suppressed in the postoperative period. The degree of suppression correlated with the extent of surgical trauma. Conclusions: In this study, we describe a surgically induced immune dysfunction animal model, in which a significant surgical trauma is followed by an immune dysfunction. This model may be ideal for the characterisation of the postoperative immune dysfunction syndrome

    Surgical Trauma and Postoperative Immune Dysfunction

    Get PDF
    Background: In postoperative sepsis, mortality is increased due to the surgically induced immune dysfunction. Further causes of this traumatic effect on the immune system include burn injuries and polytrauma, as well as endogenous traumata like stroke. Several animal models have been defined to analyse the characteristics of trauma-induced immune suppression. This article will correlate our results from animal studies and clinical observations with the recent literature on postoperative immune suppression. Methods: The previously described model of surgically induced immune dysfunction (SID) was performed in mice by laparotomy and manipulation of the small intestine in the antegrade direction. Blood samples were collected 6 and 72 h following SID to analyse the white blood cell count and corticosterone levels. To assess the postoperative immune status in humans, we analysed expression of HLA-DR on monocytes of 118 patients by flow cytometry prior to and 24, 48 and 72 h after surgery. Results: The postoperative immune suppression in our SID model is characterised by lymphocytopenia and significantly increased corticosterone levels in mice dependent on the degree of surgical trauma. This is comparable to the postoperative situation in humans: major and especially long-lasting surgery results in a significantly reduced expression of HLA-DR on circulating monocytes. Previous studies describe a similar situation following burn injury and endogenous trauma, i.e. stroke. Conclusions: We suggest the completion of our previously published sepsis classification due to the immune status at the onset of sepsis: type A as the spontaneously acquired sepsis and type B as sepsis in trauma-induced pre-existing immune suppression

    Unabhängige Prognosefaktoren beim Gallenblasenkarzinom: Greifswalder Daten von 2001-2009

    No full text
    corecore