53 research outputs found

    Developing a predictive modelling capacity for a climate change-vulnerable blanket bog habitat: Assessing 1961-1990 baseline relationships

    Get PDF
    Aim: Understanding the spatial distribution of high priority habitats and developing predictive models using climate and environmental variables to replicate these distributions are desirable conservation goals. The aim of this study was to model and elucidate the contributions of climate and topography to the distribution of a priority blanket bog habitat in Ireland, and to examine how this might inform the development of a climate change predictive capacity for peat-lands in Ireland. Methods: Ten climatic and two topographic variables were recorded for grid cells with a spatial resolution of 1010 km, covering 87% of the mainland land surface of Ireland. Presence-absence data were matched to these variables and generalised linear models (GLMs) fitted to identify the main climatic and terrain predictor variables for occurrence of the habitat. Candidate predictor variables were screened for collinearity, and the accuracy of the final fitted GLM was evaluated using fourfold cross-validation based on the area under the curve (AUC) derived from a receiver operating characteristic (ROC) plot. The GLM predicted habitat occurrence probability maps were mapped against the actual distributions using GIS techniques. Results: Despite the apparent parsimony of the initial GLM using only climatic variables, further testing indicated collinearity among temperature and precipitation variables for example. Subsequent elimination of the collinear variables and inclusion of elevation data produced an excellent performance based on the AUC scores of the final GLM. Mean annual temperature and total mean annual precipitation in combination with elevation range were the most powerful explanatory variable group among those explored for the presence of blanket bog habitat. Main conclusions: The results confirm that this habitat distribution in general can be modelled well using the non-collinear climatic and terrain variables tested at the grid resolution used. Mapping the GLM-predicted distribution to the observed distribution produced useful results in replicating the projected occurrence of the habitat distribution over an extensive area. The methods developed will usefully inform future climate change predictive modelling for Irelan

    Likelihood Based Inference and Prediction in Spatio-Temporal Panel Count Models for Urban Crimes

    Full text link
    PRELIMINARY DRAFT We discuss maximum likelihood (ML) analysis for panel count data models, in which the observed counts are linked via a measurement density to a latent Gaussian process with spatial as well as temporal dynamics and random effects. For likelihood evaluation requiring high-dimensional integration we rely upon Efficient Importance Sampling (EIS). The algorithm we develop extends existing EIS implementations by constructing importance sampling densities, which closely approximate the nontrivial spatio-temporal correlation structure under dynamic spatial panel models. In order to make this high-dimensional approximation computationally feasible, our EIS implementation exploits the typical sparsity of spatial precision matrices in such a way that all the high-dimensional matrix operations it requires can be performed using computationally fast sparse matrix functions. We use the proposed sparse EIS-ML approach for an extensive empirical study analyzing the socio-demographic determinants and the space-time dynamics of urban crime in Pittsburgh, USA, between 2008 and 2013 for a panel of monthly crime rates at census-tract level

    Generalized seasonal autoregressive integrated moving average models for count data with application to malaria time series with low case numbers

    Get PDF
    With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions' impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during "consolidation" and "pre-elimination" phases.; Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years.; The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series.; G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low

    A new INARMA(1,1) model with Poisson Marginals

    Full text link
    We suggest an INARMA(1, 1) model with Poisson marginals which extends the INAR(1) in a similar way as the INGARCH(1, 1) does for the INARCH(1) model. The new model is equivalent to a binomially thinned INAR(1) process. This allows us to obtain some of its stochastic properties and use inference methods for hidden Markov models. The model is compared to various other models in two case studies.Comment: This is a pre-print (submitted version before peer review) of a contribution in Steland, A., Rafajlowicz, E., Okhrin, O. (Eds.): Stochastic Models, Statistics and Their Applications, p. 323-333, published by Springer Nature Switzerland, 2019. The final authenticated version is available at https://doi.org/10.1007/978-3-030-28665-1_2
    • …
    corecore