107 research outputs found

    Audit of short term outcomes of surgical and medical second trimester termination of pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As comparisons of modern medical and surgical second trimester termination of pregnancy (TOP) are limited, and the optimum method of termination is still debated, an audit of second trimester TOP was undertaken, with the objective of comparing the outcomes of modern medical and surgical methods.</p> <p>Methods</p> <p>All cases of medical and surgical TOP between the gestations of 13 and 20 weeks from 1st January 2007 to 30th June 2008, among women residing in the local health board district, a tertiary teaching hospital in an urban setting, were identified by a search of ICD-10 procedure codes (surgical terminations) and from a ward database (medical terminations). Retrospective review of case notes was undertaken. A total of 184 cases, 51 medical and 133 surgical TOP, were identified. Frequency data were compared using Chi-squared or Fischer's Exact tests as appropriate and continuous data are presented as mean and standard deviation if normally distributed or median and interquartile range if non-parametric.</p> <p>Results</p> <p>Eighty-one percent of surgical terminations occurred between 13 to 16 weeks gestation, while 74% of medical terminations were performed between 17 to 20 weeks gestation. The earlier surgical TOP occurred in younger women and were more often indicated for maternal mental health. Sixteen percent of medical TOP required surgical delivery of the placenta. Evacuation of retained products was required more often after medical TOP (10%) than after surgical TOP (1%). Other serious complications were rare.</p> <p>Conclusion</p> <p>Both medical and surgical TOP are safe and effective for second trimester termination. Medical TOP tend to be performed at later gestations and are associated with a greater likelihood of manual removal of the placenta and delayed return to theatre for retained products. This case series does not address long term complications.</p

    Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants

    Get PDF
    BACKGROUND: Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties. METHODS AND FINDINGS: Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318–510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one. CONCLUSIONS: The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection

    A Gas-Efficient Superlight Bitcoin Client in Solidity

    Get PDF
    Superlight clients enable the verification of proof-of-work-based blockchains by checking only a small representative number of block headers instead of all the block headers as done in simplified payment verification (SPV). Such clients can be embedded within other blockchains by implementing them as smart contracts, allowing for cross-chain verification. One such interesting instance is the consumption of Bitcoin data within Ethereum by implementing a Bitcoin superlight client in Solidity. While such constructions have demonstrated security and efficiency in theory, no practical implementation exists. In this work, we put forth the first practical Solidity implementation of a superlight client which implements the NIPoPoW superblocks protocol. Contrary to previous work, our Solidity smart contract achieves sufficient gas-efficiency to allow a proof and counter-proof to fit within the gas limit of a block, making it practical. We provide extensive experimental measurements for gas consumption. The optimizations that enable gas-efficiency heavily leverage a novel technique which we term hash-and-resubmit, which almost completely eliminates persistent storage requirements, the most expensive operation of smart contracts in terms of gas. Instead, the contract asks contesters to resubmit data and checks their veracity by hashing it. Other optimizations include off-chain manipulation of proofs in order to remove expensive look-up structures, and the usage of an optimistic schema. We show that such techniques can be used to bring down gas costs significantly and may be of independent interest. Lastly, our implementation allows us to calculate concrete cryptoeconomic parameters for the superblocks NIPoPoWs protocol and in particular to make recommendations about the monetary value of the collateral parameters. We provide such parameter recommendations over a variety of liveness settings

    A Genetic Risk Score Combining Ten Psoriasis Risk Loci Improves Disease Prediction

    Get PDF
    Psoriasis is a chronic, immune-mediated skin disease affecting 2–3% of Caucasians. Recent genetic association studies have identified multiple psoriasis risk loci; however, most of these loci contribute only modestly to disease risk. In this study, we investigated whether a genetic risk score (GRS) combining multiple loci could improve psoriasis prediction. Two approaches were used: a simple risk alleles count (cGRS) and a weighted (wGRS) approach. Ten psoriasis risk SNPs were genotyped in 2815 case-control samples and 858 family samples. We found that the total number of risk alleles in the cases was significantly higher than in controls, mean 13.16 (SD 1.7) versus 12.09 (SD 1.8), p = 4.577×10−40. The wGRS captured considerably more risk than any SNP considered alone, with a psoriasis OR for high-low wGRS quartiles of 10.55 (95% CI 7.63–14.57), p = 2.010×10−65. To compare the discriminatory ability of the GRS models, receiver operating characteristic curves were used to calculate the area under the curve (AUC). The AUC for wGRS was significantly greater than for cGRS (72.0% versus 66.5%, p = 2.13×10−8). Additionally, the AUC for HLA-C alone (rs10484554) was equivalent to the AUC for all nine other risk loci combined (66.2% versus 63.8%, p = 0.18), highlighting the dominance of HLA-C as a risk locus. Logistic regression revealed that the wGRS was significantly associated with two subphenotypes of psoriasis, age of onset (p = 4.91×10−6) and family history (p = 0.020). Using a liability threshold model, we estimated that the 10 risk loci account for only11.6% of the genetic variance in psoriasis. In summary, we found that a GRS combining 10 psoriasis risk loci captured significantly more risk than any individual SNP and was associated with early onset of disease and a positive family history. Notably, only a small fraction of psoriasis heritability is captured by the common risk variants identified to date

    Memory-guided force output is associated with self-reported ADHD symptoms in young adults

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed mental health disorder in childhood and persists into adulthood in up to 65 % of cases. ADHD is associated with adverse outcomes such as the ability to gain and maintain employment and is associated with an increased risk for substance abuse obesity workplace injuries and traffic accidents A majority of diagnosed children have motor deficits; however, few studies have examined motor deficits in young adults. This study provides a novel examination of visuomotor control of grip force in young adults with and without ADHD. Participants were instructed to maintain force production over a 20-second trial with and without real-time visual feedback about their performance. The results demonstrated that when visual feedback was available, adults with ADHD produced slightly higher grip force than controls. However, when visual feedback was removed, adults with ADHD had a faster rate of decay of force, which was associated with ADHD symptom severity and trait impulsivity. These findings suggest that there may be important differences in the way that adults with ADHD integrate visual feedback during continuous motor tasks. These may account for some of the motor impairments reported in children with ADHD. These deficits could result from (1) dysfunctional sensory motor integration and/or (2) deficits in short-term visuomotor memory

    WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma

    Get PDF
    TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6% +/- 8.7%, respectively (p < 0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89% +/- 2% vs. 57.4% +/- 1.8% (p < 0.01)). In contrast, beta-catenin mutation sensitized TP53 mutant cells to radiation (p < 0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5% +/- 1.5% in lithium treated cells vs. 56.6 +/- 3% (p < 0.01)) accompanied by increased number of.H2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33% +/- 8% for lithium treated cells vs. 27% +/- 3% for untreated controls (p = 0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.B.R.A.I.N Child Canada; Cancer Research UK; Brain Tumour Charity; Hungarian Brain Research Program [KTIA_13_NAP-A-V/3]; Janos Bolyai Scholarship of the Hungarian Academy of Sciences [TAMOP-4.2.2. A-11/1/KONV-2012-0025]; German Cancer Aid/Dr. Mildred Scheel Foundation for Cancer Research; Cure Childhood Cancer Foundation; St. Baldrick's Foundation; Southeastern Brain Tumor Foundation; Action Medical Research; [CZ.1.05/2.1.00/03.0101]; [CZ.1.07/2.3.00/20.0183

    Full Factorial Analysis of Mammalian and Avian Influenza Polymerase Subunits Suggests a Role of an Efficient Polymerase for Virus Adaptation

    Get PDF
    Amongst all the internal gene segments (PB2. PB1, PA, NP, M and NS), the avian PB1 segment is the only one which was reassorted into the human H2N2 and H3N2 pandemic strains. This suggests that the reassortment of polymerase subunit genes between mammalian and avian influenza viruses might play roles for interspecies transmission. To test this hypothesis, we tested the compatibility between PB2, PB1, PA and NP derived from a H5N1 virus and a mammalian H1N1 virus. All 16 possible combinations of avian-mammalian chimeric viral ribonucleoproteins (vRNPs) were characterized. We showed that recombinant vRNPs with a mammalian PB2 and an avian PB1 had the strongest polymerase activities in human cells at all studied temperature. In addition, viruses with this specific PB2-PB1 combination could grow efficiently in cell cultures, especially at a high incubation temperature. These viruses were potent inducers of proinflammatory cytokines and chemokines in primary human macrophages and pneumocytes. Viruses with this specific PB2-PB1 combination were also found to be more capable to generate adaptive mutations under a new selection pressure. These results suggested that the viral polymerase activity might be relevant for the genesis of influenza viruses of human health concern

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
    corecore