15 research outputs found

    Role of carbonate burial in Blue Carbon budgets

    Get PDF
    Calcium carbonates (CaCO 3 ) often accumulate in mangrove and seagrass sediments. As CaCO 3 production emits CO 2 , there is concern that this may partially offset the role of Blue Carbon ecosystems as CO 2 sinks through the burial of organic carbon (C org ). A global collection of data on inorganic carbon burial rates (C inorg , 12% of CaCO 3 mass) revealed global rates of 0.8 TgC inorg yr −1 and 15–62 TgC inorg yr −1 in mangrove and seagrass ecosystems, respectively. In seagrass, CaCO 3 burial may correspond to an offset of 30% of the net CO 2 sequestration. However, a mass balance assessment highlights that the C inorg burial is mainly supported by inputs from adjacent ecosystems rather than by local calcification, and that Blue Carbon ecosystems are sites of net CaCO 3 dissolution. Hence, CaCO 3 burial in Blue Carbon ecosystems contribute to seabed elevation and therefore buffers sea-level rise, without undermining their role as CO 2 sinks. © 2019, The Author(s)

    Implementing precision methods in personalizing psychological therapies: barriers and possible ways forward

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: No data was used for the research described in the article.Highlights: • Personalizing psychological treatments means to customize treatment for individuals to enhance outcomes. • The application of precision methods to clinical psychology has led to data-driven psychological therapies. • Applying data-informed psychological therapies involves clinical, technical, statistical, and contextual aspects

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Role of carbonate burial in Blue Carbon budgets

    No full text
    Calcium carbonates (CaCO3) often accumulate in mangrove and seagrass sediments. As CaCO3 production emits CO2, there is concern that this may partially offset the role of Blue Carbon ecosystems as CO2 sinks through the burial of organic carbon (Corg). A global collection of data on inorganic carbon burial rates (Cinorg, 12% of CaCO3 mass) revealed global rates of 0.8 TgCinorg yr−1 and 15–62 TgCinorg yr−1 in mangrove and seagrass ecosystems, respectively. In seagrass, CaCO3 burial may correspond to an offset of 30% of the net CO2 sequestration. However, a mass balance assessment highlights that the Cinorg burial is mainly supported by inputs from adjacent ecosystems rather than by local calcification, and that Blue Carbon ecosystems are sites of net CaCO3 dissolution. Hence, CaCO3 burial in Blue Carbon ecosystems contribute to seabed elevation and therefore buffers sea-level rise, without undermining their role as CO2 sinks

    DNA-intercalators — the anthracyclines

    No full text
    corecore