9,787 research outputs found
Method of producing alternating ether siloxane copolymers Patent
Method for producing alternating ether-siloxane copolymers with stable properties when exposed to elevated temperatures and UV radiatio
Substituted silane-diol polymers have improved thermal stability
Organosilicon polymers were synthesized to produce improved physical and chemical properties, including high thermal stability. Of the polymers produced, poly/4, 4 prime-bisoxybi- phenylene/diphenylsilane, formed from bis/anilino/diphenylsilane and p, p prime-biphenol, was found to have the most desirable properties
A Model for the Effectiveness of Aircraft Alerting and Warning Systems
The effectiveness of an alerting system with a single alert was analyzed. The pilot's decision behavior is modeled by the theory of signal detection and therefore accounts for different strengths of cross check information and different pilot criteria. The model includes the effects of the alerting and warning system (CAWS) error rate; the pilot's past experience with the CAWS accuracy; his reliance on the CAWS rather than independent monitoring; missed alerts; and adoption of a minimum error or Neyman-Pearson objective rather than minimum cost objective. It is showwn that for rare events: (1) the expected cost is greatly increased if the pilot ignores the a posteriori information in the existence of an alert; (2) the expected cost is insensitive to CAWS Type 1 errors; and (3) the expected cost is sensitive to CAWS type 2 errors only when the cross check information is ambiguous
An in-flight investigation of ground effect on a forward-swept wing airplane
A limited flight experiment was conducted to document the ground-effect characteristics of the X-29A research airplane. This vehicle has an aerodynamic platform which includes a forward-swept wing and close-coupled, variable incidence canard. The flight-test program obtained results for errors in the airdata measurement and for incremental normal force and pitching moment caused by ground effect. Correlations with wind-tunnel and computational analyses were made. The results are discussed with respect to the dynamic nature of the flight measurements, similar data from other configurations, and pilot comments. The ground-effect results are necessary to obtain an accurate interpretation of the vehicle's landing characteristics. The flight data can also be used in the development of many modern aircraft systems such as autoland and piloted simulations
Study of cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system
Economic studies were conducted for three general fuel conserving options: (1) improving fuel consumption characteristics of existing aircraft via retrofit modifications; (2) introducing fuel efficient derivations of existing production aircraft and/or introducing fuel efficient, current state-of-the-art new aircraft; and (3) introducing an advanced state-of-the-art turboprop airplane. These studies were designed to produce an optimum airline fleet mix for the years 1980, 1985 and 1990. The fleet selected accommodated a normal growth market by introducing somewhat larger aircraft while solving for maximum departure frequencies and a minimum load factor corresponding to a 15% investment hurdle rate. Fuel burnt per available-seat-mile flown would drop 22% from 1980 to 1990 due to the use of more fuel efficient aircraft designs, larger average aircraft size, and increased seating density. An inflight survey was taken to determine air traveler attitudes towards a new generation of advanced turboprops
Reinforced carbon-carbon oxidation behavior in convective and radiative environments
Reinforced carbon-carbon, which is used as thermal protection on the space shuttle orbiter wing leading edges and nose cap, was tested in both radiant and plasma arcjet heating test facilities. The test series was conducted at varying temperatures and pressures. Samples tested in the plasma arcjet facility had consistently higher mass loss than those samples tested in the radiant facility. A method using the mass loss data is suggested for predicting mission mass loss for specific locations on the Orbiter
Study of an advanced General Aviation Turbine Engine (GATE)
The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development
SOYMOD OARDC: a dynamic simulator of soybean growth, development, and seed yield. I. Theory, structure, and validation
Turbulence and angular momentum transport in a global accretion disk simulation
The global development of magnetohydrodynamic turbulence in an accretion disk
is studied within a simplified disk model that omits vertical stratification.
Starting with a weak vertical seed field, a saturated state is obtained after a
few tens of orbits in which the energy in the predominantly toroidal magnetic
field is still subthermal. The efficiency of angular momentum transport,
parameterized by the Shakura-Sunyaev alpha parameter, is of the order of 0.1.
The dominant contribution to alpha comes from magnetic stresses, which are
enhanced by the presence of weak net vertical fields. The power spectra of the
magnetic fields are flat or decline only slowly towards the largest scales
accessible in the calculation, suggesting that the viscosity arising from MHD
turbulence may not be a locally determined quantity. I discuss how these
results compare with observationally inferred values of alpha, and possible
implications for models of jet formation.Comment: ApJ Letters, in press. The paper and additional visualizations are
available at http://www.cita.utoronto.ca/~armitage/global_abs.htm
Single-machine scheduling with stepwise tardiness costs and release times
We study a scheduling problem that belongs to the yard operations component of the railroad planning problems, namely the hump sequencing problem. The scheduling problem is characterized as a single-machine problem with stepwise tardiness cost objectives. This is a new scheduling criterion which is also relevant in the context of traditional machine scheduling problems. We produce complexity results that characterize some cases of the problem as pseudo-polynomially solvable. For the difficult-to-solve cases of the problem, we develop mathematical programming formulations, and propose heuristic algorithms. We test the formulations and heuristic algorithms on randomly generated single-machine scheduling problems and real-life datasets for the hump sequencing problem. Our experiments show promising results for both sets of problems
- …
