690 research outputs found

    NMR investigation of the Knight shift anomaly in CeIrIn5 at high magnetic fields

    Full text link
    We report nuclear magnetic resonance Knight shift data in the heavy fermion material CeIrIn5 at fields up to 30 T. The Knight shift of the In displays a strong anomaly, and we analyze the results using two different interpretations. We find that the Kondo lattice coherence temperature and the effective mass of the heavy electrons remains largely unaffected by the magnetic field, despite the fact that the Zeeman energy is on the order of the coherence temperature.Comment: 5 pages, 5 figures; to appear in Phys. Rev.

    First-Order Reversal Curves of the Magnetostructural Phase Transition in FeTe

    Get PDF
    We apply the first-order reversal curve (FORC) method, borrowed from studies of ferromagnetic materials, to the magneto-structural phase transition of FeTe. FORC measurements reveal two features in the hysteretic phase transition, even in samples where traditional temperature measurements display only a single transition. For Fe1.13Te, the influence of magnetic field suggests that the main feature is primarily structural while a smaller, slightly higher-temperature transition is magnetic in origin. By contrast Fe1.03Te has a single transition which shows a uniform response to magnetic field, indicating a stronger coupling of the magnetic and structural phase transitions. We also introduce uniaxial stress, which spreads the distribution width without changing the underlying energy barrier of the transformation. The work shows how FORC can help disentangle the roles of the magnetic and structural phase transitions in FeTe.Comment: 8 page

    Local edge modes in doped cuprates with checkerboard polaronic heterogeneity

    Full text link
    We study a periodic polaronic system, which exhibits a nanoscale superlattice structure, as a model for hole-doped cuprates with checkerboard-like heterogeneity, as has been observed recently by scanning tunneling microscopy (STM). Within this model, the electronic and phononic excitations are investigated by applying an unrestricted Hartree-Fock and a random phase approximation (RPA) to a multiband Peierls-Hubbard Hamiltonian in two dimensions

    Uncovering the Hidden Order in URu2Si2 by Impurity Doping

    Full text link
    We report the use of impurities to probe the hidden order parameter of the strongly correlated metal URu_2Si_2 below the transition temperature T_0 ~ 17.5 K. The nature of this order parameter has eluded researchers for more than two decades, but is accompanied by the development of a partial gap in the single particle density of states that can be detected through measurements of the electronic specific heat and nuclear spin-lattice relaxation rate. We find that impurities in the hidden order phase give rise to local patches of antiferromagnetism. An analysis of the coupling between the antiferromagnetism and the hidden order reveals that the former is not a competing order parameter but rather a parasitic effect of the latter.Comment: 4 pages, 4 figure

    Impact of disorder on dynamics and ordering in the honeycomb-lattice iridate Na2IrO3

    Get PDF
    Kitaev's honeycomb spin-liquid model and its proposed realization in materials such as α-RuCl3, Li2IrO3, and Na2IrO3 continue to present open questions about how the dynamics of a spin liquid are modified in the presence of non-Kitaev interactions as well as the presence of inhomogeneities. Here we use Na23 nuclear magnetic resonance to probe both static and dynamical magnetic properties in single-crystal Na2IrO3. We find that the NMR shift follows the bulk susceptibility above 30 K but deviates from it below; moreover below TN the spectra show a broad distribution of internal magnetic fields. Both of these results provide evidence for inequivalent magnetic sites at low temperature, suggesting inhomogeneities are important for the magnetism. The spin-lattice relaxation rate is isotropic and diverges at TN, suggesting that the Kitaev cubic axes may control the critical quantum spin fluctuations. In the ordered state, we observe gapless excitations, which may arise from site substitution, emergent defects from milder disorder, or possibly be associated with nearby quantum paramagnetic states distinct from the Kitaev spin liquid

    Local Magnetic Inhomogeneities in Lightly Doped BaFe2_2As2_2

    Full text link
    We report 75^{75}As NMR measurements in BaFe2_2As2_2 doped with Ni. Like Co, Ni doping suppresses the antiferromagnetic and structural phase transitions and gives rise to superconductivity for sufficiently large Ni doping. The spin lattice relaxation rate diverges at TNT_N, with a critical exponent consistent with 3D ordering of local moments. In the ordered state the spectra quickly broaden inhomogeneously with doping. We extract the average size of the ordered moment as a function of doping, and show that a model in which the order remains commensurate but with local amplitude variations in the vicinity of the dopant fully explains our observations.Comment: 4 pages, 4 figure

    Coulomb-U and magnetic moment collapse in δ\delta-Pu

    Full text link
    The around-the-mean-field version of the LDA+U method is applied to investigate electron correlation effects in δ\delta-Pu. It yields a non-magnetic ground state of δ\delta-Pu, and provides a good agreement with experimental equilibrium volume, bulk modulus and explains important features of the photoelectron spectra

    Microscopic evidence for field-induced magnetism in CeCoIn5_5

    Full text link
    We present NMR data in the normal and superconducting states of CeCoIn5_5 for fields close to Hc2(0)=11.8H_{\rm c2}(0)=11.8 T in the abab plane. Recent experiments identified a first-order transition from the normal to superconducting state for H>10.5H> 10.5 T, and a new thermodynamic phase below 290 mK within the superconducting state. We find that the Knight shifts of the In(1), In(2) and the Co are discontinuous across the first-order transition and the magnetic linewidths increase dramatically. The broadening differs for the three sites, unlike the expectation for an Abrikosov vortex lattice, and suggests the presence of static spin moments in the vortex cores. In the low-temperature and high-field phase the broad NMR lineshapes suggest ordered local moments, rather than a long wavelength quasiparticle spin density modulation expected for an FFLO phase.Comment: 4 pages, 4 figures. to appear in Phys. Rev. Let
    corecore