3,169 research outputs found
Inequality and Institutions: A Review Essay on Why Nations Fail by Daron Acemoglu and James A. Robinson
A Review Essay on Why Nations Fail: The Origins of Power, Prosperity, and Poverty by Daron Acemoglu and James A. Robinson (Random House, 2012
Fgf-dependent glial cell bridges facilitate spinal cord regeneration in Zebrafish
Adult Zebrafish show a remarkable capacity to regenerate their spinal column after injury, an ability that stands in stark contrast to the limited repair that occurs within the mammalian CNS post-injury. The reasons for this interspecies difference in regenerative capacity remain unclear. Here we demonstrate a novel role for Fgf signaling during glial cell morphogenesis in promoting axonal regeneration after spinal cordinjury. Zebrafish glia are induced by Fgf signaling, to form anelongated bipolarmorphology that formsabridge between the two sides of the resected spinal cord, over which regenerating axons actively migrate. Loss of Fgf function inhibits formation of this "glial bridge" and prevents axon regeneration. Despite the poor potential for mammalian axonal regeneration, primate astrocytes activated by Fgf signaling adopt a similar morphology to that induced in Zebrafish glia. This suggests that differential Fgf regulation, rather than intrinsic cell differences, underlie the distinct responses of mammalian and Zebrafish glia to injury
Seshat: The Global History Databank
The vast amount of knowledge about past human societies has not been systematically organized and, therefore, remains inaccessible for empirically testing theories about cultural evolution and historical dynamics. For example, what evolutionary mechanisms were involved in the transition from the small-scale, uncentralized societies, in which humans lived 10,000 years ago, to the large-scale societies with an extensive division of labor, great differentials in wealth and power, and elaborate governance structures of today? Why do modern states sometimes fail to meet the basic needs of their populations? Why do economies decline, or fail to grow? In this article, we describe the structure and uses of a massive databank of historical and archaeological information, Seshat: The Global History Databank. The data that we are currently entering in Seshat will allow us and others to test theories explaining how modern societies evolved from ancestral ones, and why modern societies vary so much in their capacity to satisfy their members’ basic human needsPeer reviewedFinal Published versio
Agricultural productivity in past societies: toward an empirically informed model for testing cultural evolutionary hypotheses
Agricultural productivity, and its variation in space and time, plays a fundamental role in many theories of human social evolution. However, we often lack systematic information about the productivity of past agricultural systems on a scale large enough to test these theories properly. The effect of climate on crop yields has received a great deal of attention resulting in a range of empirical and process-based models, yet the focus has primarily been on current or future conditions. In this paper, we argue for a “bottom-up” approach that estimates potential productivity based on information about the agricultural practices and technologies used in past societies. Of key theoretical interest is using this information to estimate the carrying high quality historical and archaeological information about past societies in order to infer the temporal and geographic patterns of change in agricultural productivity and potential. We discuss information we need to collect about past agricultural techniques and practices, and introduce a new databank initiative that we have developed for collating the best available historical and archaeological evidence. A key benefit of our approach lies in making explicit the steps in the estimation of past productivities and carrying capacities, and in being able to assess the effects of different modelling assumptions. This is undoubtedly an ambitious task, yet promises to provide important insights into fundamental aspects of past societies, enabling us to test more rigorously key hypotheses about human socio-cultural evolution
Willingness to cooperate in shared natural resource management is linked to group identification through perceived efficacy and group norms
Cooperative management of shared natural resources is one of the most urgent challenges the world is facing today. While there have been advances in understanding institutional design features that enable sustainable management, there are few field studies that provide theory-based insights into social psychological predictors of willingness to cooperate around shared resources. Here, we address this issue in the context of shared land management in pastoralist community conservancies in Kenya. In a large survey of individuals from different conservancies, we test a path model that links willingness to cooperate to how strongly respondents identified with their conservancy. This relationship is mediated by how efficient conservancies were perceived to be, and to what extent other people in the community were perceived to share cooperative norms. The results also point towards several parameters that may be conducive to developing stronger conservancy identification: transparency of purpose, motive alignment, sense of ownership, and demonstrating benefit. The findings provide insights into the social psychological processes that impact whether cooperative outcomes can be achieved in real-world shared resource settings, and offer practical implications for strengthening governance within pastoralist conservancies and related shared natural resource management contexts
Formation and Evolution of Planetary Systems (FEPS): Properties of Debris Dust around Solar-type Stars
We present Spitzer photometric (IRAC and MIPS) and spectroscopic (IRS low
resolution) observations for 314 stars in the Formation and Evolution of
Planetary Systems (FEPS) Legacy program. These data are used to investigate the
properties and evolution of circumstellar dust around solar-type stars spanning
ages from approximately 3 Myr to 3 Gyr. We identify 46 sources that exhibit
excess infrared emission above the stellar photosphere at 24um, and 21 sources
with excesses at 70um. Five sources with an infrared excess have
characteristics of optically thick primordial disks, while the remaining
sources have properties akin to debris systems. The fraction of systems
exhibiting a 24um excess greater than 10.2% above the photosphere is 15% for
ages < 300 Myr and declines to 2.7% for older ages. The upper envelope to the
70um fractional luminosity appears to decline over a similar age range. The
characteristic temperature of the debris inferred from the IRS spectra range
between 60 and 180 K, with evidence for the presence of cooler dust to account
for the strength of the 70um excess emission. No strong correlation is found
between dust temperature and stellar age. Comparison of the observational data
with disk models containing a power-law distribution of silicate grains suggest
that the typical inner disk radius is > 10 AU. Although the interpretation is
not unique, the lack of excess emission shortwards of 16um and the relatively
flat distribution of the 24um excess for ages <300~Myr is consistent with
steady-state collisional models.Comment: 85 pages, 18 figures, 4 tables; accepted for publication in ApJ
- …