76 research outputs found

    A new primary dental care service compared with standard care for child and family to reduce the re-occurrence of childhood dental caries (Dental RECUR): study protocol for a randomised controlled trial

    Get PDF
    Background: In England and Scotland, dental extraction is the single highest cause of planned admission to the hospital for children under 11 years. Traditional dental services have had limited success in reducing this disease burden. Interventions based on motivational interviewing have been shown to impact positively dental health behaviours and could facilitate the prevention of re-occurrence of dental caries in this high-risk population. The objective of the study is to evaluate whether a new, dental nurse-led service, delivered using a brief negotiated interview based on motivational interviewing, is a more cost-effective service than treatment as usual, in reducing the re-occurrence of dental decay in young children with previous dental extractions. Methods/Design: This 2-year, two-arm, multicentre, randomised controlled trial will include 224 child participants, initially aged 5 to 7 years, who are scheduled to have one or more primary teeth extracted for dental caries under general anaesthesia (GA), relative analgesia (RA: inhalation sedation) or local anaesthesia (LA). The trial will be conducted in University Dental Hospitals, Secondary Care Centres or other providers of dental extraction services across the United Kingdom. The intervention will include a brief negotiated interview (based on the principles of motivational interviewing) delivered between enrolment and 6 weeks post-extraction, followed by directed prevention in primary dental care. Participants will be followed up for 2 years. The main outcome measure will be the dental caries experienced by 2 years post-enrolment at the level of dentine involvement on any tooth in either dentition, which had been caries-free at the baseline assessment. Discussion: The participants are a hard-to-reach group in which secondary prevention is a challenge. Lack of engagement with dental care makes the children and their families scheduled for extraction particularly difficult to recruit to an RCT. Variations in service delivery between sites have also added to the challenges in implementing the Dental RECUR protocol during the recruitment phase. Trial registration: ISRCTN24958829 (date of registration: 27 September 2013), Current protocol version: 5.0

    HNF4alpha Dysfunction as a Molecular Rational for Cyclosporine Induced Hypertension

    Get PDF
    Induction of tolerance against grafted organs is achieved by the immunosuppressive agent cyclosporine, a prominent member of the calcineurin inhibitors. Unfortunately, its lifetime use is associated with hypertension and nephrotoxicity. Several mechanism for cyclosporine induced hypertension have been proposed, i.e. activation of the sympathetic nervous system, endothelin-mediated systemic vasoconstriction, impaired vasodilatation secondary to reduction in prostaglandin and nitric oxide, altered cytosolic calcium translocation, and activation of the renin-angiotensin system (RAS). In this regard the molecular basis for undue RAS activation and an increased signaling of the vasoactive oligopeptide angiotensin II (AngII) remain elusive. Notably, angiotensinogen (AGT) is the precursor of AngII and transcriptional regulation of AGT is controlled by the hepatic nuclear factor HNF4alpha. To better understand the molecular events associated with cyclosporine induced hypertension, we investigated the effect of cyclosporine on HNF4alpha expression and activity and searched for novel HNF4alpha target genes among members of the RAS cascade. Using bioinformatic algorithm and EMSA bandshift assays we identified angiotensin II receptor type 1 (AGTR1), angiotensin I converting enzyme (ACE), and angiotensin I converting enzyme 2 (ACE2) as genes targeted by HNF4alpha. Notably, cyclosporine represses HNF4alpha gene and protein expression and its DNA-binding activity at consensus sequences to AGT, AGTR1, ACE, and ACE2. Consequently, the gene expression of AGT, AGTR1, and ACE2 was significantly reduced as evidenced by quantitative real-time RT-PCR. While RAS is composed of a sophisticated interplay between multiple factors we propose a decrease of ACE2 to enforce AngII signaling via AGTR1 to ultimately result in vasoconstriction and hypertension. Taken collectively we demonstrate cyclosporine to repress HNF4alpha activity through calcineurin inhibitor mediated inhibition of nuclear factor of activation of T-cells (NFAT) which in turn represses HNF4alpha that leads to a disturbed balance of RAS

    Genetic polymorphisms of the RAS-cytokine pathway and chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) in children is irreversible. It is associated with renal failure progression and atherosclerotic cardiovascular (CV) abnormalities. Nearly 60% of children with CKD are affected since birth with congenital or inherited kidney disorders. Preliminary evidence primarily from adult CKD studies indicates common genetic risk factors for CKD and atherosclerotic CV disease. Although multiple physiologic pathways share common genes for CKD and CV disease, substantial evidence supports our attention to the renin angiotensin system (RAS) and the interlinked inflammatory cascade because they modulate the progressions of renal and CV disease. Gene polymorphisms in the RAS-cytokine pathway, through altered gene expression of inflammatory cytokines, are potential factors that modulate the rate of CKD progression and CV abnormalities in patients with CKD. For studying such hypotheses, the cooperative efforts among scientific groups and the availability of robust and affordable technologies to genotype thousands of single nucleotide polymorphisms (SNPs) across the genome make genome-wide association studies an attractive paradigm for studying polygenic diseases such as CKD. Although attractive, such studies should be interpreted carefully, with a fundamental understanding of their potential weaknesses. Nevertheless, whole-genome association studies for diabetic nephropathy and future studies pertaining to other types of CKD will offer further insight for the development of targeted interventions to treat CKD and associated atherosclerotic CV abnormalities in the pediatric CKD population

    Epidermal growth factor-enhanced human angiotensin II type 1 receptor.

    No full text

    Familial pericentric inversion chromosome 3 and R448C mutation of CYP11B1 gene in Turkish kindred with 11β-hydroxylase deficiency

    No full text
    11 beta-hydroxylase deficiency is the second most common cause of congenital adrenal hyperplasia (CAH). This isoenzyme is coded by two highly homologous genes of cytochrome P450: CYP11B1 and CYP11B2 which were mapped to the chromosomal band 8q24. The aim of this study was to perform a series of molecular and cytogenetic analyses in two families with 11 P-hydroxylase deficiency of the Turkish kindred. Mutational analysis was carried out by directly sequencing the PCR products of CYP11B1 gene. We performed fluorescence in situ hybridisation (FISH) experiments with consecutive bacterial artificial chromosome (BAC) clones to map the breakpoints of the inversion of chromosome 3 which was detected during the karyotypic analysis of the propositus. Homozygous R448C mutations were detected in 2 individuals with 11 beta-hydroxylase deficiency. Interestingly, karyotypic change of pericentric inversion [inv(3)(p13q24)] was detected in both individuals who are cousins, one transmitted paternally and the other maternally. The breakpoint at 3p included one interesting gene PPP4R2. Here we present the data of two Turkish families' members having 11 beta-hydroxylase deficiency coupled with the familial chromosomal aberration of inv(3)(p13q24). Our data suggest that codon 448, which is a mutational hot spot in CYP11B1 causing 11 beta-hydroxylase cleficiency, is not restricted to Jews of Moroccan origin. Phenotypic variations observed in former studies in patients homozygous for R448H were stated to be due to other factors outside the CYP11B1 locus. The breakpoint in 3p might be a candidate region affecting variations in phenotypes of 11 beta-hydroxylase deficiency
    corecore