279 research outputs found

    Quantum Limit for the Emittance of Dirac Particles Carrying Orbital Angular Momentum

    Get PDF
    In this article, we highlight that the interaction potential confining Dirac particles in a box must be invariant under the charge conjugation to avoid the Klein paradox, in which an infinite number of negative-energy particles are excited. Furthermore, we derive the quantization rules for a relativistic particle in a cylindrical box, which emulates the volume occupied by a beam of particles with a non-trivial aspect ratio. We apply our results to the evaluation of the quantum limit for emittance in particle accelerators. The developed theory allows the description of quantum beams carrying Orbital Angular Momentum (OAM). We demonstrate how the degeneracy pressure is such to increase the phase-space area of Dirac particles carrying OAM. The results dramatically differ from the classical evaluation of phase-space areas, that would foresee no increase in emittance for beams in a coherent state of OAM. We discuss the quantization of the phase-space cell's area for single Dirac particles carrying OAM, and, finally, provide an interpretation of the beam entropy as the measure of how much the phase-space area occupied by the beam deviates from its quantum limit

    Preface to "Oscillator-Amplifier Free Electron Lasers an Outlook to Their Feasibility and Performances"

    Get PDF
    Free Electron Lasers (FELs) are certainly among the most interesting devices, belonging to the realm of coherent radiation sources [...

    parametric conversion in micrometer and submicrometer structured ferroelectric crystals by surface poling

    Get PDF
    We report on recent technological improvements concerning nonlinear patterning of lithium niobate and lithium tantalate in the micrometer and submicrometer scales using surface periodic poling for ferroelectric domain inversion. The fabricated samples were employed for frequency doubling via quasiphase-matching both in bulk and guided wave geometries, including forward and backward configurations and wavelength conversion in bands C and L. We also investigated short-period quasiperiodic samples with randomly distributed mark-to-space ratios

    Selection rules for the orbital angular momentum of optically-produced THz radiation

    Get PDF
    In this work we theoretically study the transduction ofthe Orbital Angular Momentum (OAM)lfor infraredpump lasers into the THz domain. In the case of opti-cal rectification, the transduction of OAM occurs onlythrough a spin-orbit interaction, with the selection ruleon the OAMl=0valid for any kind of polarizationof the pump, which means that there is no transfer ofOAM along the propagation axis. In the difference fre-quency generation the selection rule for the difference∆lbetween the OAM of the pump fields with linear orcircular polarization isl=∆l, whereaslranges from∆l−2to∆l+2in both the cases of radial and azimuthalpolarization. Moreover, for THz generation in the lat-ter case, high diffraction obtained with tightly focusedpumps yieldsltending to∆l±2, whileltends to zeroin the opposite case of large pump beam

    Features of randomized electric-field assisted domain inversion in lithium tantalate

    Get PDF
    We report on bulk and guided-wave second-harmonic generation via random Quasi-Phase-Matching in Lithium Tantalate. By acquiring the far-field profiles at several wavelengths, we extract statistical information on the distribution of the quadratic nonlinearity as well as its average period, both at the surface and in the bulk of the sample. By investigating the distribution in the two regions we demonstrate a non-invasive approach to the study of poling dynamics

    Intensity and phase retrieval of IR laser pulse by THz-based measurement and THz waveform modulation

    Get PDF
    Abstract THz radiation is of great interest for a variety of applications. Simultaneously with the demonstration of high-intensity THz sources the idea to use this radiation for particle acceleration started to be investigated. THz accelerating gradients up to GV/m have been demonstrated in laboratory. THz radiation can be generated through the optical rectification process induced in non-linear crystals by a pump laser. The temporal shape of the pump laser and in general its characteristics are important aspects to be known in order to produce THz radiation via optical rectification in a controlled way. Here we present a technique that can be used to retrieve the temporal profile characteristics (envelope and phase) of the pump laser, starting from the detection of the THz waveform/spectrum and the knowledge of the physical/optical properties of the crystal used to produce it. This work also shows that the THz field can be shaped by properly acting on the pump laser phase. The possibility to opportunely shape the THz field is of great importance for many applications. Therefore this work paves the way to the possibility to coherently and dynamically control the THz field shape
    • …
    corecore