1,926 research outputs found

    Diffusion-desorption ratio of adsorbed CO and CO2_2 on water ice

    Get PDF
    Diffusion of atoms and molecules is a key process for the chemical evolution in the star forming regions of the interstellar medium. Accurate data on the mobility of many important interstellar species is however often not available and this provides a serious limitation for the reliability of models describing the physical and chemical processes in molecular clouds. Here we aim to provide the astrochemical modeling community with reliable data on the ratio between the energy barriers for diffusion and desorption for adsorbed CO and CO2_2 on water ices. To this end, we use a fully atomistic, off-lattice kinetic Monte Carlo technique to generate dynamical trajectories of CO and CO2_2 molecules on the surface of crystalline ice at temperatures relevant for the interstellar medium. The diffusion to desorption barrier ratios are determined to be 0.31 for CO and 0.39 for CO2_2 . These ratios can be directly used to improve the accuracy of current gas-grain chemical models.Comment: 4 pages, 3 figures, accepted for publication in Astronomy & Astrophysic

    Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry

    Full text link
    AIM: We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that can produce molecular oxygen, water, carbon dioxide, formaldehyde, methanol and assorted radicals. METHOD: The simulation is started by running a gas-phase model including accretion onto grains but no surface chemistry or evaporation. The starting surface consists of either flat or rough olivine. We introduce the surface chemistry of the three species H, O and CO in an iterative manner using our stochastic technique. Under the conditions of the simulation, only atomic hydrogen can evaporate to a significant extent. Although it has little effect on other gas-phase species, the evaporation of atomic hydrogen changes its gas-phase abundance, which in turn changes the flux of atomic hydrogen onto grains. The effect on the surface chemistry is treated until convergence occurs. We neglect all non-thermal desorptive processes. RESULTS: We determine the mantle abundances of assorted molecules as a function of time through 2x10^5 yr. Our method also allows determination of the abundance of each molecule in specific monolayers. The mantle results can be compared with observations of water, carbon dioxide, carbon monoxide, and methanol ices in the sources W33A and Elias 16. Other than a slight underproduction of mantle CO, our results are in very good agreement with observations.Comment: 13 pages, 7 figures, to be published in A. &

    Long-timescale simulations of H2_2O admolecule diffusion on Ice Ih(0001) surfaces

    Full text link
    Long-timescale simulations of the diffusion of a H2_2O admolecule on the (0001) basal plane of ice Ih were carried out over a temperature range of 100 to 200 K using the adaptive kinetic Monte Carlo method and TIP4P/2005f interaction potential function. The arrangement of dangling H atoms was varied from the proton-disordered surface to the perfectly ordered Fletcher surface. A large variety of sites was found leading to a broad distribution in adsorption energy at both types of surfaces. Up to 4 % of the sites on the proton-disordered surface have an adsorption energy exceeding the cohesive energy of ice Ih. The mean squared displacement of a simulated trajectory at 175 K for the proton-disordered surface gave a diffusion constant of 6\cdot1010^{-10} cm2^2/s, consistent with an upper bound previously reported from experimental measurements. During the simulation, dangling H atoms were found to rearrange so as to reduce clustering, thereby approaching a linear Fletcher type arrangement. Diffusion on the perfectly ordered Fletcher surface was estimated to be significantly faster, especially in the direction along the rows of dangling hydrogen atoms. From simulations over the range in temperature, an effective activation energy of diffusion was estimated to be 0.16 eV and 0.22 eV for diffusion parallel and perpendicular to the rows, respectively. Even a slight disruption of the rows of the Fletcher surface made the diffusion isotropic.Comment: 24 pages, 8 figures, 1 tabl

    Remark on a paper by J.W.P. Hirschfeld

    Get PDF

    Interactions of adsorbed CO2_2 on water ice at low temperatures

    Get PDF
    We present a computational study into the adsorption properties of CO2_2 on amorphous and crystalline water surfaces under astrophysically relevant conditions. Water and carbon dioxide are two of the most dominant species in the icy mantles of interstellar dust grains and a thorough understanding of their solid phase interactions at low temperatures is crucial for understanding the structural evolution of the ices due to thermal segregation. In this paper, a new H2_2O-CO2_2 interaction potential is proposed and used to model the ballistic deposition of CO2_2 layers on water ice surfaces, and to study the individual binding sites at low coverages. Contrary to recent experimental results, we do not observe CO2_2 island formation on any type of water substrate. Additionally, density functional theory calculations are performed to assess the importance of induced electrostatic interactions.Comment: Accepted for publication in Physical Chemistry Chemical Physic

    Putting Perspectives into Participation:Constructive Conflict Methodology for Problem Structuring in Stakeholder Dialogues

    Get PDF
    Berkhout, F.G.H. [Promotor]Midden, C.J.H. [Promotor]Leemans, R. [Promotor]Hirsschemoller, M. [Copromotor

    A kinetic Monte Carlo study of desorption of H2 from graphite (0001)

    Full text link
    The formation of H2 in the interstellar medium proceeds on the surfaces of silicate or carbonaceous particles. To get a deeper insight of its formation on the latter substrate, this letter focuses on H2 desorption from graphite (0001) in Temperature-Programmed-Desorption Monte-Carlo simulations. The results are compared to experimental results which show two main peaks and an intermediate shoulder for high initial coverage. The simulation program includes barriers obtained by ab-initio methods and is further optimised to match two independent experimental observations. The simulations reproduce the two experimental observed desorption peaks. Additionally, a possible origin of the intermediate peak is given.Comment: 9 pages, 5 figures, Chem. Phys. Lett. in pres

    Origins of Chevron Rollovers in Non-Two-State Protein Folding Kinetics

    Full text link
    Chevron rollovers of some proteins imply that their logarithmic folding rates are nonlinear in native stability. This is predicted by lattice and continuum G\=o models to arise from diminished accessibilities of the ground state from transiently populated compact conformations under strongly native conditions. Despite these models' native-centric interactions, the slowdown is due partly to kinetic trapping caused by some of the folding intermediates' nonnative topologies. Notably, simple two-state folding kinetics of small single-domain proteins are not reproduced by common G\=o-like schemes.Comment: 10 pages, 4 Postscript figures (will appear on PRL

    Thermal H/D exchange in polar ice - deuteron scrambling in space

    Get PDF
    We have investigated the thermally induced proton/deuteron exchange in mixed amorphous H2_2O:D2_2O ices by monitoring the change in intensity of characteristic vibrational bending modes of H2_2O, HDO, and D2_2O with time and as function of temperature. The experiments have been performed using an ultra-high vacuum setup equipped with an infrared spectrometer that is used to investigate the spectral evolution of homogeneously mixed ice upon co-deposition in thin films, for temperatures in the 90 to 140 K domain. With this non-energetic detection method we find a significantly lower activation energy for H/D exchange -- 3840±1253840 \pm 125 K -- than previously reported. Very likely this is due to the amorphous nature of the interstellar ice analogues involved. This provides reactive timescales (τ70\tau70 K) fast enough for the process to be important in interstellar environments. Consequently, an astronomical detection of D2_2O will be even more challenging because of its potential to react with H2_2O to form HDO. Furthermore, additional experiments, along with previous studies, show that proton/deuteron swapping also occurs in ice mixtures of water with other hydrogen bonded molecules, in particular on the OH and NH moieties. We conclude that H/D exchange in ices is a more general process that should be incorporated into ice models that are applied to protoplanetary disks or to simulate the warming up of cometary ices in their passage of the perihelion, to examine the extent of its influence on the final deuteron over hydrogen ratio.Comment: 10 pages, 8 figures, accepted for publication in MNRA
    corecore