341 research outputs found

    Death ideation in cancer patients: contributing factors

    Get PDF
    Advances in cancer research and therapy have improved prognosis and the quality of life of many patients. However, previous epidemiological studies in oncologic patients have shown an increased risk of suicide. Suicidal thoughts, relatively well known in those terminally ill, may be just as important for cancer patients who are survivors or are living with the disease. Nonetheless, there is a relative paucity of data about suicidality in this setting. The authors conducted a prospective observational study to identify death thoughts and to explore the factors associated with suicidal ideation in cancer patients. A sample of 130 patients referred for psychiatric consultation was obtained following informed consent and authorization from the local ethics committee. A semistructured interview assessed sociodemographic data, psychosocial support, and information regarding the cancer process and its treatment. Psychometric instruments were used to evaluate psychopathology, namely the Hospital Anxiety and Depression Scale, the Beck Hopelessness Scale, and the Beck Scale for Suicide Ideation. Psychiatric diagnoses were obtained through the application of the Mini International Neuropsychiatric Interview. Death ideation was identified in 34.6% of patients, yet only 10% had active suicidal thoughts. Risk of suicide was associated with female gender, a psychiatric diagnosis (major depressive disorder, panic disorder, or dysthymia), difficult interpersonal relationships, associated pain, high hopelessness, and depressive and anxiety symptoms. Although suicidal thoughts are frequent in cancer patients at different stages of disease, most are transitory. Risk factors for suicidal ideation have been identified, such as depression, hopelessness, uncontrolled pain, and difficult interpersonal relationships. Further assessment is necessary to identify those at higher risk of attempting suicide, and underlying psychiatric disorders should be vigorously treated

    Effect of temperature on the passive state of Alloy 31 in a LiBr solution: Passivation and Mott-Schottky analysis

    Get PDF
    The passive behaviour of Alloy 31, a highly‐alloyed austenitic stainless steel (UNS N08031), has been investigated in a LiBr heavy brine (700 g/l) at different temperatures using potentiostatic polarisation and Mott‐Schottky analysis. Cation vacancies have been found to be the dominant defect in the passive films formed on Alloy 31. An increase in temperature enhanced the generation of cation vacancies at the film/solution interface and raised the steady‐state passive current density. The density of defects within the passive film also increased significantly with temperature, making the film more conductive and less protective against localised attacks

    Exercise Training Prevents Diaphragm Contractile Dysfunction in Heart Failure

    Get PDF
    Purpose: Patient studies have demonstrated the efficacy of exercise training in attenuating respiratory muscle weakness in chronic heart failure (HF), yet direct assessment of muscle fiber contractile function together with data on the underlying intracellular mechanisms remains elusive. The present study, therefore, used a mouse model of HF to assess whether exercise training could prevent diaphragm contractile fiber dysfunction by potentially mediating the complex interplay between intracellular oxidative stress and proteolysis. Methods: Mice underwent sham operation (n = 10) or a ligation of the left coronary artery and were randomized to sedentary HF (n = 10) or HF with aerobic exercise training (HF + AET; n = 10). Ten weeks later, echocardiography and histological analyses confirmed HF. Results: In vitro diaphragm fiber bundles demonstrated contractile dysfunction in sedentary HF compared with sham mice that was prevented by AET, with maximal force 21.0 ± 0.7 versus 26.7 ± 1.4 and 25.4 ± 1.4 N·cm−2, respectively (P < 0.05). Xanthine oxidase enzyme activity and MuRF1 protein expression, markers of oxidative stress and protein degradation, were ~20% and ~70% higher in sedentary HF compared with sham mice (P < 0.05) but were not different when compared with the HF + AET group. Oxidative modifications to numerous contractile proteins (i.e., actin and creatine kinase) and markers of proteolysis (i.e., proteasome and calpain activity) were elevated in sedentary HF compared with HF + AET mice (P < 0.05); however, these indices were not significantly different between sedentary HF and sham mice. Antioxidative enzyme activities were also not different between groups. Conclusion: Our findings demonstrate that AET can protect against diaphragm contractile fiber dysfunction induced by HF, but it remains unclear whether alterations in oxidative stress and/or protein degradation are primarily responsible

    Effect of alloying elements on the electronic properties of thin passive films formed on carbon steel, ferritic and austenitic stainless steels in a highly concentrated LiBr solution

    Get PDF
    The influence of alloying elements on the electrochemical and semiconducting properties of thin passive films formed on several steels (carbon steel, ferritic and austenitic stainless steels) has been studied in a highly concentrated lithium bromide (LiBr) solution at 25 °C, by means of potentiodynamic tests and Mott-Schottky analysis. The addition of Cr to carbon steel promoted the formation of a p-type semiconducting region in the passive film. A high Ni content modified the electronic behaviour of highly alloyed austenitic stainless steels. Mo did not modify the electronic structure of the passive films, but reduced the concentration of defects

    Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus

    Get PDF
    © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Abstract Staphylococcus aureus (S. aureus) is a bacterium frequently found proliferating on metal surfaces such as stainless steels used in healthcare and food processing facilities. Past research has shown that a novel Cu-bearing 304 type stainless steel (304CuSS) exhibits excellent antibacterial ability (i.e. against S. aureus) in a short time period (24 h.). This work was dedicated to investigate the 304CuSS's inhibition ability towards the S. aureus biofilm formation for an extended period of 7 days after incubation. It was found that the antibacterial rate of the 304CuSS against sessile bacterial cells reached over 99.9% in comparison with the 304SS. The thickness and sizes of the biofilms on the 304SS surfaces increased markedly with period of contact, and thus expected higher risk of bio-contamination, indicated by the changes of surface free energy between biofilm and the steel surfaces. The results demonstrated that the 304CuSS exhibited strong inhibition on the growth and adherence of the biofilms. The surface free energy of the 304CuSS after contact with sessile bacterial cells was much lower than that of the 304SS towards the same culture times. The continuously dissolved Cu2+ ions well demonstrated the dissolution ability of Cu-rich precipitates after exposure to S. aureus solution, from 3.1 ppm (2 days) to 4.5 ppm (7 days). For this to occur, a hypothesis mechanism might be established for 304CuSS in which the Cu2+ ions were released from Cu-rich phases that bond with extracellular polymeric substances (EPS) of the microorganisms. And these inhibited the activities of cell protein/enzymes and effectively prevented planktonic bacterial cells attaching to the 304CuSS metal surface.Peer reviewedFinal Published versio

    Passive and transpassive behaviour of Alloy 31 in a heavy brine LiBr solution

    Get PDF
    The passive and transpassive behaviour of Alloy 31, a highly alloyed austenitic stainless steel (UNS N08031), has been investigated in a LiBr heavy brine solution (400 g/l) at 25 °C using potentiostatic polarisation combined with electrochemical impedance spectroscopy and Mott-Schottky analysis. The passive film formed on Alloy 31 has been found to be p-type and/or n-type in electronic character, depending on the film formation potential. The thickness of the film formed at potentials within the passive region increases linearly with applied potential. The film formed at transpassive potentials is thinner and more conductive than the film formed within the passive region. These observations are consistent with the predictions of the Point Defect Model for passive and transpassive films on metals and alloys

    Characterization of thermal oxide films formed on a duplex stainless steel by means of confocal-Raman microscopy and electrochemical techniques

    Full text link
    In this work oxide films have been developed on the surface of a duplex stainless steel (UNS 1.4462) using high temperature confocal microscopy to follow their growth. The characteristics of these oxide films have been analyzed by means of weight-gain measurements, Raman microscopy and electrochemical techniques, namely potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results show an increase in the amount of oxides (particularly γ-Fe2O3 and Fe3O4) with temperature. Regarding the electrochemical properties of these films, the corrosion resistance of the film tends to be lower with the heat treatment temperature, probably due to a more porous and heterogeneous scale. Mott–Schottky plots show the n-type semiconductive behavior of the films with donor densities that decrease with the enhancement of the temperature.We wish to express our gratitude to MICINN (CTQ2009-07518) (UPVO8-3E-012), to Universitat Politecnica de Valencia (CEI-01-11), to the Generalitat Valenciana for its help in the CLSM acquisition (MY08/ISIRM/S/100), and to Dr. Asuncion Jaime for her translation assistance.Sánchez Tovar, R.; Leiva García, R.; García Antón, J. (2015). Characterization of thermal oxide films formed on a duplex stainless steel by means of confocal-Raman microscopy and electrochemical techniques. Thin Solid Films. 576:1-10. https://doi.org/10.1016/j.tsf.2014.12.024S11057

    The added value of brand alliances in higher education

    Get PDF
    This study examines perceptions of brand alliances, in the form of dual degrees, between UK universities. Signalling theory and attitude accessibility are applied to test for evidence of added value of dual degrees bearing the names of two universities compared to single degrees. The results support the main hypothesis that perceptions of added value of a dual degree initiated by a high (low) ranked context university decline (increase) in line with the ranking of a lower (higher) rank partner university. The findings reveal interaction effects between the rank position of the initiating university and the evaluation criteria. Name-order effects explain the higher perceived value of a dual degree between high-and-low ranked universities compared to a dual degree between low-and-high ranked universities. In addition to being the first study to examine brand alliances in the UK HE domain, the study makes a number of contributions to the general brand alliance literature and provides managerial guidelines
    corecore