66 research outputs found

    Postnatal anthropometric and body composition profiles in infants with intrauterine growth restriction identified by prenatal doppler

    Get PDF
    Introduction: Infant anthropometry and body composition have been previously assessed to gauge the impact of intrauterine growth restriction (IUGR) at birth, but the interplay between prenatal Doppler measurements and postnatal development has not been studied in this setting. The present investigation was performed to assess the significance of prenatal Doppler findings relative to postnatal anthropometrics and body composition in IUGR newborns over the first 12 months of life. Patients and methods: Consecutive cases of singleton pregnancies with suspected IUGR were prospectively enrolled over 12 months. Fetal biometry and prenatal Doppler ultrasound examinations were performed. Body composition was assessed by absorptiometry at ages 10 days, and at 4 and12 months. Results: A total of 48 pregnancies qualifying as IUGR were studied. Doppler parameters were normal in 26 pregnancies. The remaining 22 deviated from normal, marked by an Umbilical Artery Pulsatility Index (UA-PI) >95th centil or Cerebro-placental ratio (CPR) <5th centile. No significant differences emerged when comparing anthropometry and body composition at each time point, in relation to Doppler findings. Specifically, those IUGR newborns with and without abnormal Doppler findings had similar weight, length, body mass index, lean and fat mass, and bone mineral content throughout the first 12 months of life. In a separate analysis, when comparing IUGR newborns by Doppler (abnormal UA-PI vs. abnormal CPR), anthropometry and body composition did not differ significantly. Conclusions: Infants with IUGR maintain a pattern of body composition during the first year of life that is independent of prenatal Doppler findings. Future studies with larger sample sizes and correlating with hormonal status are warranted to further extend the phenotypic characterization of the various conditions now classified under the common label of IUGR

    Support vector method for robust ARMA system identification

    Get PDF
    This paper presents a new approach to auto-regressive and moving average (ARMA) modeling based on the support vector method (SVM) for identification applications. A statistical analysis of the characteristics of the proposed method is carried out. An analytical relationship between residuals andSVM-ARMA coefficients allows the linking of the fundamentals of SVM with several classical system identification methods. Additionally, the effect of outliers can be cancelled. Application examples show the performance of SVM-ARMA algorithm when it is compared with other system identification methods.Publicad

    On-farm greenhouse gas emissions associated with the cultivation of two new bioenergy crops in the UK

    Get PDF
    Before using novel energy crops to produce bioenergy, feasibility studies should be completed to determine their effect on net greenhouse gas emissions. The current study developed a model to study the greenhouse gas emissions associated with the cultivation of two novel bioenergy crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L., using Intergovernmental Panel on Climate Change (IPCC) guidelines. The establishment and cultivation of Sida hermaphrodita and Silphium perfoliatum were compared with an arable rotation, short rotation coppice (SRC) and Miscanthus. Under the assumptions specified in the current study, including annual fertilisation and a high root: shoot ratio for Sida, the cultivation of Sida hermaphrodita and Silphium perfoliatum resulted in a mean net emission of 3.0 Mg CO2eq ha−1y−1 and mean net sequestration of 0.6 Mg CO2eq ha−1y−1 respectively over a 16 year rotation. This compared to predicted mean net emissions of 4.2 Mg CO2eq ha−1y−1 for an arable rotation, and intermediate values for the SRC and Miscanthus crop (1.0 and 2.2 Mg CO2eq ha− 1y− 1, respectively)

    Two novel energy crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. - State of knowledge

    Get PDF
    Current global temperature increases resulting from human activity threaten many ecosystems and societies, and have led to international and national policy commitments that aim to reduce greenhouse gas emissions. Bioenergy crops provide one means of reducing greenhouse gas emissions from energy production and two novel crops that could be used for this purpose are Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L. This research examined the existing scientific literature available on both crops through a systematic review. The data were collated according to the agronomy, uses, and environmental benefits of each crop. Possible challenges were associated with high initial planting costs, low yields in low rainfall areas, and for Sida hermaphrodita, vulnerability to Sclerotinia sclerotiorum. However, under appropriate environmental conditions, both crops were found to provide large yields over sustained periods of time with relatively low levels of management and could be used to produce large energy surpluses, either through direct combustion or biogas production. Other potential uses included fodder, fibre, and pharmaceutical uses. Environmental benefits included the potential for phytoremediation, and improvements to soil health, biodiversity, and pollination. The review also demonstrated that environmental benefits, such as pollination, soil health, and water quality benefits could be obtained from the use of Sida hermaphrodita and Silphium perfoliatum relative to existing bioenergy crops such as maize, whilst at the same time reducing the greenhouse gas emissions associated with energy production. Future research should examine the long-term implications of using Sida hermaphrodita and Silphium perfoliatum as well as improve knowledge on how to integrate them successfully within existing farming systems and supply chains

    Inherited biotic protection in a Neotropical pioneer plant

    Get PDF
    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants

    Comparative economics of Sida hermaphrodita (l.) Rusby and Silphium perfoliatum L. as bioenergy crops in Europe

    Get PDF
    The purpose of this research was to fill the identified gap on financial data of Sida hermaphrodita (L.) Rusby (Sida) and Silphium perfoliatum L. (Silphium), two perennial bioenergy crops that potentially provide a more sustainable alternative/complement to other bioenergy crops. Using discounted cash flow analysis, the Net Present Values of Sida and Silphium were compared to a rotation of other arable crops including maize, and the two energy crops of short rotation coppice and Miscanthus. The analysis was completed using the SidaTim analysis tool for the UK, Italy, Germany and Poland, producing a total of four independent models. The results showed that with no subsidies, cultivating Sida was unattractive in all four countries relative to other crop options. However, Silphium, was an economically viable option in each country. Both Sida and Silphium can offer greater environmental benefits than other arable crops, and the profitability of each crop would be further enhanced if additional payments for such public services were made to farmers, and if there were secure markets for the sale of the biomass. This study is the first comparative economic analysis in West and Central Europe of the two novel energy crops in comparison to more common energy crops and an arable rotation

    The protective gene dose effect of the APOE Δ2 allele on gray matter volume in cognitively unimpaired individuals

    Get PDF
    INTRODUCTION: Harboring two copies of the apolipoprotein E (APOE) Δ2 allele strongly protects against Alzheimer's disease (AD). However, the effect of this genotype on gray matter (GM) volume in cognitively unimpaired individuals has not yet been described. METHODS: Multicenter brain magnetic resonance images (MRIs) from cognitively unimpaired Δ2 homozygotes were matched (1:1) against all other APOE genotypes for relevant confounders (n = 223). GM volumes of Δ2 genotypic groups were compared to each other and to the reference group (APOE Δ3/Δ3). RESULTS: Carrying at least one Δ2 allele was associated with larger GM volumes in brain areas typically affected by AD and also in areas associated with cognitive resilience. APOE Δ2 homozygotes, but not APOE Δ2 heterozygotes, showed larger GM volumes in areas related to successful aging. DISCUSSION: In addition to the known resistance against amyloid-ÎČ deposition, the larger GM volumes in key brain regions may confer APOE Δ2 homozygotes additional protection against AD-related cognitive decline

    Perivascular spaces are associated with tau pathophysiology and synaptic dysfunction in early Alzheimer’s continuum

    Get PDF
    Background: Perivascular spaces (PVS) have an important role in the elimination of metabolic waste from the brain. It has been hypothesized that the enlargement of PVS (ePVS) could be affected by pathophysiological mechanisms involved in Alzheimer’s disease (AD), such as abnormal levels of CSF biomarkers. However, the relationship between ePVS and these pathophysiological mechanisms remains unknown. Objective: We aimed to investigate the association between ePVS and CSF biomarkers of several pathophysiological mechanisms for AD. We hypothesized that ePVS will be associated to CSF biomarkers early in the AD continuum (i.e., amyloid positive cognitively unimpaired individuals). Besides, we explored associations between ePVS and demographic and cardiovascular risk factors. Methods: The study included 322 middle-aged cognitively unimpaired participants from the ALFA + study, many within the Alzheimer’s continuum. NeuroToolKit and ElecsysÂź immunoassays were used to measure CSF AÎČ42, AÎČ40, p-tau and t-tau, NfL, neurogranin, TREM2, YKL40, GFAP, IL6, S100, and α-synuclein. PVS in the basal ganglia (BG) and centrum semiovale (CS) were assessed based on a validated 4-point visual rating scale. Odds ratios were calculated for associations of cardiovascular and AD risk factors with ePVS using logistic and multinomial models adjusted for relevant confounders. Models were stratified by AÎČ status (positivity defined as AÎČ42/40 < 0.071). Results: The degree of PVS significantly increased with age in both, BG and CS regions independently of cardiovascular risk factors. Higher levels of p-tau, t-tau, and neurogranin were significantly associated with ePVS in the CS of AÎČ positive individuals, after accounting for relevant confounders. No associations were detected in the BG neither in AÎČ negative participants. Conclusions: Our results support that ePVS in the CS are specifically associated with tau pathophysiology, neurodegeneration, and synaptic dysfunction in asymptomatic stages of the Alzheimer’s continuum

    SARS-CoV-2 viral load in nasopharyngeal swabs is not an independent predictor of unfavorable outcome

    Get PDF
    The aim was to assess the ability of nasopharyngeal SARS-CoV-2 viral load at first patient’s hospital evaluation to predict unfavorable outcomes. We conducted a prospective cohort study including 321 adult patients with confirmed COVID-19 through RT-PCR in nasopharyngeal swabs. Quantitative Synthetic SARS-CoV-2 RNA cycle threshold values were used to calculate the viral load in log10 copies/mL. Disease severity at the end of follow up was categorized into mild, moderate, and severe. Primary endpoint was a composite of intensive care unit (ICU) admission and/or death (n = 85, 26.4%). Univariable and multivariable logistic regression analyses were performed. Nasopharyngeal SARS-CoV-2 viral load over the second quartile (≄ 7.35 log10 copies/mL, p = 0.003) and second tertile (≄ 8.27 log10 copies/mL, p = 0.01) were associated to unfavorable outcome in the unadjusted logistic regression analysis. However, in the final multivariable analysis, viral load was not independently associated with an unfavorable outcome. Five predictors were independently associated with increased odds of ICU admission and/or death: age ≄ 70 years, SpO2, neutrophils > 7.5 × 103/”L, lactate dehydrogenase ≄ 300 U/L, and C-reactive protein ≄ 100 mg/L. In summary, nasopharyngeal SARS-CoV-2 viral load on admission is generally high in patients with COVID-19, regardless of illness severity, but it cannot be used as an independent predictor of unfavorable clinical outcome

    Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection

    Get PDF
    Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection induces an exacerbated inflammation driven by innate immunity components. Dendritic cells (DCs) play a key role in the defense against viral infections, for instance plasmacytoid DCs (pDCs), have the capacity to produce vast amounts of interferon-alpha (IFN-α). In COVID-19 there is a deficit in DC numbers and IFN-α production, which has been associated with disease severity. In this work, we described that in addition to the DC deficiency, several DC activation and homing markers were altered in acute COVID-19 patients, which were associated with multiple inflammatory markers. Remarkably, previously hospitalized and nonhospitalized patients remained with decreased numbers of CD1c+ myeloid DCs and pDCs seven months after SARS-CoV-2 infection. Moreover, the expression of DC markers such as CD86 and CD4 were only restored in previously nonhospitalized patients, while no restoration of integrin ÎČ7 and indoleamine 2,3-dyoxigenase (IDO) levels were observed. These findings contribute to a better understanding of the immunological sequelae of COVID-19
    • 

    corecore