82 research outputs found

    Gas Accretion and Galactic Chemical Evolution: Theory and Observations

    Full text link
    This chapter reviews how galactic inflows influence galaxy metallicity. The goal is to discuss predictions from theoretical models, but particular emphasis is placed on the insights that result from using models to interpret observations. Even as the classical G-dwarf problem endures in the latest round of observational confirmation, a rich and tantalizing new phenomenology of relationships between MM_*, ZZ, SFR, and gas fraction is emerging both in observations and in theoretical models. A consensus interpretation is emerging in which star-forming galaxies do most of their growing in a quiescent way that balances gas inflows and gas processing, and metal dilution with enrichment. Models that explicitly invoke this idea via equilibrium conditions can be used to infer inflow rates from observations, while models that do not assume equilibrium growth tend to recover it self-consistently. Mergers are an overall subdominant mechanism for delivering fresh gas to galaxies, but they trigger radial flows of previously-accreted gas that flatten radial gas-phase metallicity gradients and temporarily suppress central metallicities. Radial gradients are generically expected to be steep at early times and then flattened by mergers and enriched inflows of recycled gas at late times. However, further theoretical work is required in order to understand how to interpret observations. Likewise, more observational work is needed in order to understand how metallicity gradients evolve to high redshifts.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springer. 29 pages, 2 figure

    Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response

    Get PDF
    Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation

    Gas Accretion and Star Formation Rates

    Full text link
    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star-formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star-formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star-formation are analyzed, specifically, the short gas consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the alpha-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    Whole Genome Sequences of Three Treponema pallidum ssp. pertenue Strains: Yaws and Syphilis Treponemes Differ in Less than 0.2% of the Genome Sequence

    Get PDF
    Spirochete Treponema pallidum ssp. pertenue (TPE) is the causative agent of yaws while strains of Treponema pallidum ssp. pallidum (TPA) cause syphilis. Both yaws and syphilis are distinguished on the basis of epidemiological characteristics and clinical symptoms. Neither treponeme can reproduce outside the host organism, which precludes the use of standard molecular biology techniques used to study cultivable pathogens. In this study, we determined high quality whole genome sequences of TPE strains and compared them to known genetic information for T. pallidum ssp. pallidum strains. The genome structure was identical in all three TPE strains and also between TPA and TPE strains. The TPE genome length ranged between 1,139,330 bp and 1,139,744 bp. The overall sequence identity between TPA and TPE genomes was 99.8%, indicating that the two pathogens are extremely closely related. A set of 34 TPE genes (3.5%) encoded proteins containing six or more amino acid replacements or other major sequence changes. These genes more often belonged to the group of genes with predicted virulence and unknown functions suggesting their involvement in infection differences between yaws and syphilis

    Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer

    Get PDF
    Background: MicroRNAs (MiRNAs) are short non-coding RNAs that control protein expression through various mechanisms. Their altered expression has been shown to be associated with various cancers. The aim of this study was to profile miRNA expression in colorectal cancer (CRC) and to analyze the function of specific miRNAs in CRC cells. MirVana miRNA Bioarrays were used to determine the miRNA expression profile in eight CRC cell line models, 45 human CRC samples of different stages, and four matched normal colon tissue samples. SW620 CRC cells were stably transduced with miR-143 or miR-145 expression vectors and analyzed in vitro for cell proliferation, cell differentiation and anchorage-independent growth. Signalling pathways associated with differentially expressed miRNAs were identified using a gene set enrichment analysis. Results: The expression analysis of clinical CRC samples identified 37 miRNAs that were differentially expressed between CRC and normal tissue. Furthermore, several of these miRNAs were associated with CRC tumor progression including loss of miR-133a and gain of miR-224. We identified 11 common miRNAs that were differentially expressed between normal colon and CRC in both the cell line models and clinical samples. In vitro functional studies indicated that miR-143 and miR-145 appear to function in opposing manners to either inhibit or augment cell proliferation in a metastatic CRC model. The pathways targeted by miR-143 and miR-145 showed no significant overlap. Furthermore, gene expression analysis of metastatic versus non-metastatic isogenic cell lines indicated that miR-145 targets involved in cell cycle and neuregulin pathways were significantly down-regulated in the metastatic context. Conclusion: MiRNAs showing altered expression at different stages of CRC could be targets for CRC therapies and be further developed as potential diagnostic and prognostic analytes. The identified biological processes and signalling pathways collectively targeted by co-expressed miRNAs in CRC provide a basis for understanding the functional role of miRNAs in cancer. © 2009 Arndt et al; licensee BioMed Central Ltd

    Association of nutritional status and serum albumin levels with development of toxicity in patients with advanced non-small cell lung cancer treated with paclitaxel-cisplatin chemotherapy: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A frequent manifestation of advanced NSCLC is malnutrition, even though there are many studies which relate it with a poor survival, its relation with toxicity has not yet been consistently reported. The aim of this study was to associate malnutrition and albumin serum levels with the occurrence of chemotherapy-induced toxicity in cisplatin plus paclitaxel chemotherapy-treated NSCLC.</p> <p>Methods</p> <p>We prospectively evaluated 100 stage IV NSCLC patients treated with paclitaxel (175 mg/m<sup>2</sup>) and cisplatin (80 mg/m<sup>2</sup>). Malnutrition was assessed using SGA prior treatment. Neutrophil Lymphocyte Ratio (NLR) and the Platelet Lymphocyte Ratio (PLR) were used to determine the presence of systemic inflammatory response (SIR) and were related to the development of toxicity. Toxicity was graded according to NCI CTCAE version 3.0 after two chemotherapy cycles.</p> <p>Results</p> <p>Median age was 58 ± 10 years, 51% of patients were malnourished, 50% had albumin ≤3.0 mg/mL. NLR ≥ 5 was associated with basal hypoalbuminemia (mean ranks, 55.7 vs. 39 p = 0.006), ECOG = 2 (47.2 vs. 55.4 p = 0.026) and PLR ≥ 150 were significantly related with a basal body mass index ≤20 (56.6 vs. 43.5; p = 0.02) and hypoalbuminemia (58.9 vs. 41.3; p = 0.02). Main toxicities observed after 2 cycles of chemotherapy were alopecia (84%), nausea (49%), neuropathy (46%), anemia (33%), lymphopenia (31%), and leukopenia (30%). Patients malnourished and with hypoalbuminemia developed more chemotherapy-induced toxicity overall when compared with those without malnutrition (31 vs 22; <it>p </it>= 0.02) and normal albumin (mean ranks, 62 vs 43; <it>p </it>= 0.002), respectively. Hypoalbuminemia was associated with anemia (56 vs 47; <it>p </it>= 0.05), fatigue (58 vs 46; <it>p </it>= 0.01), and appetite loss (57.1 vs 46.7; <it>p </it>= 0.004) compared with normal albumin. PLR ≥ 150 was related with the development of toxicity grade III/IV (59.27 vs. 47.03 p = 0.008) and anemia (37.9 vs 53.8 p = 0.004).</p> <p>Conclusion</p> <p>SIR parameters were associated with malnutrition, weight loss and hypoalbuminemia. Chemotherapy-induced toxicity in NSCLC patients treated with paclitaxel and cisplatin was associated with malnutrition and hypoalbuminemia. Early nutritional assessment and support might confer beneficial effects.</p

    Galaxy and Mass Assembly (GAMA): Variation in Galaxy Structure Across the Green Valley

    Get PDF
    Using a sample of 472 local Universe (z < 0.06) galaxies in the stellar mass range 10.25 < log M*/MG < 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is sub-divided into red, green and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using KiDS and VIKING derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells and signs of merger activity for all systems. We find a significant surplus of rings (2.3σ) and lenses (2.9σ) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3σ relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ∼ 44% which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ∼ 20 − 30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0σ surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley. Key words: galaxies: elliptical and lenticular, cD – galaxies: spiral – galaxies: evo- lution – galaxies: star formation – galaxies: statistics – galaxies: structur

    Repurposed floxacins targeting RSK4 prevent chemoresistance and metastasis in lung and bladder cancer

    Get PDF
    Lung and bladder cancers are mostly incurable because of the early development of drug resistance and metastatic dissemination. Hence, improved therapies that tackle these two processes are urgently needed to improve clinical outcome. We have identified RSK4 as a promoter of drug resistance and metastasis in lung and bladder cancer cells. Silencing this kinase, through either RNA interference or CRISPR, sensitized tumor cells to chemotherapy and hindered metastasis in vitro and in vivo in a tail vein injection model. Drug screening revealed several floxacin antibiotics as potent RSK4 activation inhibitors, and trovafloxacin reproduced all effects of RSK4 silencing in vitro and in/ex vivo using lung cancer xenograft and genetically engineered mouse models and bladder tumor explants. Through x-ray structure determination and Markov transient and Deuterium exchange analyses, we identified the allosteric binding site and revealed how this compound blocks RSK4 kinase activation through binding to an allosteric site and mimicking a kinase autoinhibitory mechanism involving the RSK4’s hydrophobic motif. Last, we show that patients undergoing chemotherapy and adhering to prophylactic levofloxacin in the large placebo-controlled randomized phase 3 SIGNIFICANT trial had significantly increased (P = 0.048) long-term overall survival times. Hence, we suggest that RSK4 inhibition may represent an effective therapeutic strategy for treating lung and bladder cancer

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore