43 research outputs found

    The Epitope Study on the SARS-CoV Nucleocapsid Protein

    Get PDF
    The nucleocapsid protein (N protein) has been found to be an antigenic protein in a number of coronaviruses. Whether the N protein in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is antigenic remains to be elucidated. Using Western blot and Enzyme-linked Immunosorbent Assay (ELISA), the recombinant N proteins and the synthesized peptides derived from the N protein were screened in sera from SARS patients. All patient sera in this study displayed strong positive immunoreactivities against the recombinant N proteins, whereas normal sera gave negative immunoresponses to these proteins, indicating that the N protein of SARS-CoV is an antigenic protein. Furthermore, the epitope sites in the N protein were determined by competition experiments, in which the recombinant proteins or the synthesized peptides competed against the SARS-CoV proteins to bind to the antibodies raised in SARS sera. One epitope site located at the C-terminus was confirmed as the most antigenic region in this protein. A detailed screening of peptide with ELISA demonstrated that the amino sequence from Codons 371 to 407 was the epitope site at the C-terminus of the N protein. Understanding of the epitope sites could be very significant for developing an effective diagnostic approach to SARS

    PTTG1 Attenuates Drug-Induced Cellular Senescence

    Get PDF
    As PTTG1 (pituitary tumor transforming gene) abundance correlates with adverse outcomes in cancer treatment, we determined mechanisms underlying this observation by assessing the role of PTTG1 in regulating cell response to anti-neoplastic drugs. HCT116 cells devoid of PTTG1 (PTTG1βˆ’/βˆ’) exhibited enhanced drug sensitivity as assessed by measuring BrdU incorporation in vitro. Apoptosis, mitosis catastrophe or DNA damage were not detected, but features of senescence were observed using low doses of doxorubicin and TSA. The number of drug-induced PTTG1βˆ’/βˆ’ senescent cells increased ∼4 fold as compared to WT PTTG1-replete cells (p<0.001). p21, an important regulator of cell senescence, was induced ∼3 fold in HCT116 PTTG1βˆ’/βˆ’ cells upon doxorubicin or Trichostatin A treatment. Binding of Sp1, p53 and p300 to the p21 promoter was enhanced in PTTG1βˆ’/βˆ’ cells after treatment, suggesting transcriptional regulation of p21. p21 knock down abrogated the observed senescent effects of these drugs, indicating that PTTG1 likely suppresses p21 to regulate drug-induced senescence. PTTG1 also regulated SW620 colon cancer cells response to doxorubicin and TSA mediated by p21. Subcutaneously xenografted PTTG1βˆ’/βˆ’ HCT116 cells developed smaller tumors and exhibited enhanced responses to doxorubicin. PTTG1βˆ’/βˆ’ tumor tissue derived from excised tumors exhibited increased doxorubicin-induced senescence. As senescence is a determinant of cell responses to anti-neoplastic treatments, these findings suggest PTTG1 as a tumor cell marker to predict anti-neoplastic treatment outcomes

    Lineage-Specific Restraint of Pituitary Gonadotroph Cell Adenoma Growth

    Get PDF
    Although pituitary adenomas are usually benign, unique trophic mechanisms restraining cell proliferation are unclear. As GH-secreting adenomas are associated with p53/p21-dependent senescence, we tested mechanisms constraining non-functioning pituitary adenoma growth. Thirty six gonadotroph-derived non-functioning pituitary adenomas all exhibited DNA damage, but undetectable p21 expression. However, these adenomas all expressed p16, and >90% abundantly expressed cytoplasmic clusterin associated with induction of the Cdk inhibitor p15 in 70% of gonadotroph and in 26% of somatotroph lineage adenomas (pβ€Š=β€Š0.006). Murine LΞ²T2 and Ξ±T3 gonadotroph pituitary cells, and Ξ±GSU.PTTG transgenic mice with targeted gonadotroph cell adenomas also abundantly expressed clusterin and exhibited features of oncogene-induced senescence as evidenced by C/EBPΞ² and C/EBPΞ΄ induction. In turn, C/EBPs activated the clusterin promoter ∼5 fold, and elevated clusterin subsequently elicited p15 and p16 expression, acting to arrest murine gonadotroph cell proliferation. In contrast, specific clusterin suppression by RNAis enhanced gonadotroph proliferation. FOXL2, a tissue-specific gonadotroph lineage factor, also induced the clusterin promoter ∼3 fold in Ξ±T3 pituitary cells. As nine of 12 pituitary carcinomas were devoid of clusterin expression, this protein may limit proliferation of benign adenomatous pituitary cells. These results point to lineage-specific pathways restricting uncontrolled murine and human pituitary gonadotroph adenoma cell growth

    Pancreatic neuroendocrine tumors in glucagon receptor-deficient mice.

    Get PDF
    Inhibition of glucagon signaling causes hyperglucagonemia and pancreatic Ξ± cell hyperplasia in mice. We have recently demonstrated that a patient with an inactivating glucagon receptor mutation (P86S) also exhibits hyperglucagonemia and pancreatic Ξ± cell hyperplasia but further develops pancreatic neuroendocrine tumors (PNETs). To test the hypothesis that defective glucagon signaling causes PNETs, we studied the pancreata of mice deficient in glucagon receptor (Gcgr(-/-)) from 2 to 12 months, using WT and heterozygous mice as controls. At 2-3 months, Gcgr(-/-) mice exhibited normal islet morphology but the islets were mostly composed of Ξ± cells. At 5-7 months, dysplastic islets were evident in Gcgr(-/-) mice but absent in WT or heterozygous controls. At 10-12 months, gross PNETs (β‰₯1 mm) were detected in most Gcgr(-/-) pancreata and micro-PNETs (<1 mm) were found in all (nβ€Š=β€Š14), whereas the islet morphology remained normal and no PNETs were found in any WT (nβ€Š=β€Š10) or heterozygous (nβ€Š=β€Š25) pancreata. Most PNETs in Gcgr(-/-) mice were glucagonomas, but some were non-functioning. No tumors predominantly expressed insulin, pancreatic polypeptide, or somatostatin, although some harbored focal aggregates of tumor cells expressing one of those hormones. The PNETs in Gcgr(-/-) mice were well differentiated and occasionally metastasized to the liver. Menin expression was aberrant in most dysplatic islets and PNETs. Vascular endothelial growth factor (VEGF) was overexpressed in PNET cells and its receptor Flk-1 was found in the abundant blood vessels or blood islands inside the tumors. We conclude that defective glucagon signaling causes PNETs in the Gcgr(-/-) mice, which may be used as a model of human PNETs. Our results further suggest that completely inhibiting glucagon signaling may not be a safe approach to treat diabetes

    Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics

    No full text
    Neurons are commonly organized as regular arrays within a structure, and their patterning is achieved by minimizing the proximity between like-type cells, but molecular mechanisms regulating this process have, until recently, been unexplored. We performed a forward genetic screen using recombinant inbred (RI) strains derived from two parental A/J and C57BL/6J mouse strains to identify genomic loci controlling spacing of cholinergic amacrine cells, which is a subclass of retinal interneuron. We found conspicuous variation in mosaic regularity across these strains and mapped a sizeable proportion of that variation to a locus on chromosome 11 that was subsequently validated with a chromosome substitution strain. Using a bioinformatics approach to narrow the list of potential candidate genes, we identified pituitary tumor-transforming gene 1 (Pttg1) as the most promising. Expression of Pttg1 was significantly different between the two parental strains and correlated with mosaic regularity across the RI strains. We identified a seven-nucleotide deletion in the Pttg1 promoter in the C57BL/6J mouse strain and confirmed a direct role for this motif in modulating Pttg1 expression. Analysis of Pttg1 KO mice revealed a reduction in the mosaic regularity of cholinergic amacrine cells, as well as horizontal cells, but not in two other retinal cell types. Together, these results implicate Pttg1 in the regulation of homotypic spacing between specific types of retinal neurons. The genetic variant identified creates a binding motif for the transcriptional activator protein 1 complex, which may be instrumental in driving differential expression of downstream processes that participate in neuronal spacing

    Downregulation of survivin by RNAi inhibits the growth of esophageal carcinoma cells.

    No full text
    Esophageal squamous cell carcinoma ranks among one of the most frequent cause of cancer death in the world. Understanding of the molecular mechanisms involved in the pathogenesis of esophageal cancer becomes critical to develop more effective treatments. Elevated expression of survivin in esophageal carcinoma has been reported before and suppression of survivin expression leads to many tumor cells growth inhibition. We hypothesized that downregulation of survivin would inhibit the growth of human esophageal cancer cells. RNA interference directed against survivin was introduced into a human esophageal squamous cell carcinoma cell line KYSE510. Stable clones were selected and western blot analysis was performed to detect the protein level of survivin. Tumor cell growth in vitro and in vivo was assessed by trypan blue exclusion and nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometric analysis and TUNEL assay were used to detect apoptosis in cell culture and in nude mice. We found that RNA interference could efficiently and stably suppress survivin expression in KYSE510 cells. Downregulation of survivin resulted in significantly inhibition of tumor growth in vitro and in vivo. The mechanism appears to be increased induction of apoptosis. Our results suggest a potential role for the targeting of survivin in the treatments of esophageal carcinoma

    Accumulation of cytoplasmic beta-catenin correlates with reduced expression of E-cadherin, but not with phosphorylated Akt in esophageal squamous cell carcinoma: immunohistochemical study

    No full text
    Accumulation of Ξ²-catenin in cytoplasm occurs frequently during the pathogenesis of esophageal squamous cell carcinoma (ESCC). The mechanism leading to this alteration, however, is largely unknown. In the present study, immunohistochemistry was performed for Ξ²-catenin, E-cadherin and Ser473 phosphorylated Akt (P-Akt) in 44 tissue samples of ESCC and corresponding normal esophageal epithelium. Exon 3 of the Ξ²-catenin gene was analyzed by using single-strand conformation polymorphism and direct sequencing. In addition to the reduced expression of E-cadherin and membranous Ξ²-catenin observed in 65.9% and 68% of ESCC tested, respectively, cytoplasmic accumulation of Ξ²-catenin was also detected in 68% (30/44) cases. However, only two cases were found to have the same Ξ²-catenin gene mutation. The data showed that cytoplasmic accumulation of Ξ²-catenin was significantly associated with reduced expression of E-cadherin (P &lt; 0.05) and that of membranous Ξ²-catenin (P &lt; 0.05). Furthermore, cytoplasmic Ξ²-catenin was correlated significantly with lymph node metastasis (P &lt; 0.05). In contrast, although strong staining of P-Akt occurred in 14 of 44 cases (32%), there was no significant correlation between the positive staining of P-Akt and cytoplasmic Ξ²-catenin. Taken together these results suggest that the lost membranous Ξ²-catenin might translocate to cytoplasm depending on reduced expression of E-cadherin, while Akt seems unlikely to play a role in this process

    Filtration efficiency analysis of fibrous filters: Experimental and theoretical study on the sampling of agglomerate particles emitted from a GDI engine

    No full text
    <p>Fibrous filters are commonly used for aerosol purification and sampling. The filtration efficiency has been extensively studied using standard aerosol generators, yet the literature on experimental data and theoretical study concerning the filtration of agglomerates from real engines remains scarce. A filtration efficiency test system was developed to determine the filtration efficiency of two types of filters (uncoated and fluorocarbon coated) loaded by particulate matter (PM) emissions from a gasoline direct injection (GDI) engine. The experimental results showed that the filtration efficiency in terms of PM mass and number increased over time for both types of filters. The fractional efficiency (penetration efficiency) curves for the test fibrous filters rendered a U-shaped curve for particle sizes from 70 to 500Β nm, and the most penetrating particulate size (MPPS) decreased over time. A small fraction of accumulation mode particles with the size between 70Β nm to 500Β nm penetrated the filters while almost all nucleation mode particles with the size below 50Β nm were captured by the filters. The filtration efficiency derived from an empirical model based on classical single-fiber theory for laden filters generally agreed with the experimental data for the first 500Β s, but suffered a significant deviation by approximately one order of magnitude at 948Β s. A better estimate of the filtration efficiency trend with the maximum deviation of about 20% (except for large particles at the high end of the measurement spectra) was obtained by using a revised model which incorporates the effects of the increase in filter solidity, local velocity, dynamic shape factor and effective total length of fibers during the filtration process.</p> <p>Β© 2017 American Association for Aerosol Research</p
    corecore