214 research outputs found

    Exact ground states of a staggered supersymmetric model for lattice fermions

    Get PDF
    We study a supersymmetric model for strongly interacting lattice fermions in the presence of a staggering parameter. The staggering is introduced as a tunable parameter in the manifestly supersymmetric Hamiltonian. We obtain analytic expressions for the ground states in the limit of small and large staggering for the model on the class of doubly decorated lattices. On this type of lattice there are two ground states, each with a different density. In one limit we find these ground states to be a simple Wigner crystal and a valence bond solid (VBS) state. In the other limit we find two types of quantum liquids. As a special case, we investigate the quantum liquid state on the one dimensional chain in detail. It is characterized by a massless kink that separates two types of order.Comment: 21 pages, 6 figures, v2: largely rewritten version with more emphasis on physical interpretatio

    Noseleaf Dynamics during Pulse Emission in Horseshoe Bats

    Get PDF
    Horseshoe bats emit their biosonar pulses nasally and diffract the outgoing ultrasonic waves by conspicuous structures that surrounded the nostrils. Here, we report quantitative experimental data on the motion of a prominent component of these structures, the anterior leaf, using synchronized laser Doppler vibrometry and acoustic recordings in the greater horseshoe bat (Rhinolophus ferrumequinum). The vibrometry data has demonstrated non-random motion patterns in the anterior leaf. In these patterns, the outer rim of the walls of the anterior leaf twitches forward and inwards to decrease the aperture of the noseleaf and increase the curvature of its surfaces. Noseleaf displacements were correlated with the emitted ultrasonic pulses. After their onset, the inward displacements increased monotonically towards their maximum value which was always reached within the duration of the biosonar pulse, typically towards its end. In other words, the anterior leaf’s surfaces were moving inwards during most of the pulse. Non-random motions were not present in all recorded pulse trains, but could apparently be switched on or off. Such switches happened between sequences of consecutive pulses but were never observed between individual pulses within a sequence. The amplitudes of the emitted biosonar pulse and accompanying noseleaf movement were not correlated in the analyzed data set. The measured velocities of the noseleaf surface were too small to induce Doppler shifts of a magnitude with a likely significance. However, the displacement amplitudes were significant in comparison with the overall size of the anterior leaf and the sound wavelengths. These results indicate the possibility that horseshoe bats use dynamic sensing principles on the emission side of their biosonar system. Given the already available evidence that such mechanisms exist for biosonar reception, it may be hypothesized that time-variant mechanisms play a pervasive role in the biosonar sensing of horseshoe bats

    Comparison of biological and chemical properties of arable and pasture Solonetz soils

    Get PDF
    Soil samples were collected from salt-affected soils (Solonetz) under different land uses, namely arable (SnA) and pasture (SnP), to investigate the effects of land use on microbiological [basal soil respiration (BSR), microbial biomass carbon (MBC), dehydrogenase activity (DHA) and phosphatase activity] and chemical properties [organic carbon (OC), humic ratio (E4/E6), pH, electrical conductivity (EC), ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), available forms of phosphorus (P2O5), potassium (K2O), calcium (Ca2+), magnesium (Mg2+), sodium (Na+)] and on the moisture content. The results showed that the two sites, SnA and SnP, were statistically different from each other for all the microbiological and chemical parameters investigated except Na+ and moisture content. Higher values of MBC (575.67 μg g-1), BSR (9.71 μg CO2 g-1 soil h-1), DHA (332.76 μg formazan g-1 day-1) and phosphatase activity (0.161 μmol PNP g-1 hr-1) were observed for the SnP soil. Great heterogeneity was found in SnP in terms of microbiological properties, whereas the SnA plots showed more homogeneous microbiological activity due to ploughing. 75.34% of variance was explained by principal component one (PC1), which significantly separated SnA and SnP, especially on the basis of soil MBC and P2O5. Moreover, it was concluded that the pasture land (SnP) was microbiologically more active than arable land (SnA) among the Hungarian salt-affected soils investigated

    Asteroseismology of the Beta Cephei star 12 (DD) Lacertae: photometric observations, pulsational frequency analysis and mode identification

    Get PDF
    We report a multisite photometric campaign for the Beta Cephei star 12 Lacertae. 750 hours of high-quality differential photoelectric Stromgren, Johnson and Geneva time-series photometry were obtained with 9 telescopes during 190 nights. Our frequency analysis results in the detection of 23 sinusoidal signals in the light curves. Eleven of those correspond to independent pulsation modes, and the remainder are combination frequencies. We find some slow aperiodic variability such as that seemingly present in several Beta Cephei stars. We perform mode identification from our colour photometry, derive the spherical degree l for the five strongest modes unambiguously and provide constraints on l for the weaker modes. We find a mixture of modes of 0 <= l <= 4. In particular, we prove that the previously suspected rotationally split triplet within the modes of 12 Lac consists of modes of different l; their equal frequency splitting must thus be accidental. One of the periodic signals we detected in the light curves is argued to be a linearly stable mode excited to visible amplitude by nonlinear mode coupling via a 2:1 resonance. We also find a low-frequency signal in the light variations whose physical nature is unclear; it could be a parent or daughter mode resonantly coupled. The remaining combination frequencies are consistent with simple light-curve distortions. The range of excited pulsation frequencies of 12 Lac may be sufficiently large that it cannot be reproduced by standard models. We suspect that the star has a larger metal abundance in the pulsational driving zone, a hypothesis also capable of explaining the presence of Beta Cephei stars in the LMC.Comment: 12 pages, 7 figures, MNRAS, in pres

    Roles of genetic polymorphisms in the folate pathway in childhood acute lymphoblastic leukemia evaluated by bayesian relevance and effect size analysis.

    Get PDF
    In this study we investigated whether polymorphisms in the folate pathway influenced the risk of childhood acute lymphoblastic leukemia (ALL) or the survival rate of the patients. For this we selected and genotyped 67 SNPs in 15 genes in the folate pathway in 543 children with ALL and 529 controls. The results were evaluated by gender adjusted logistic regression and by the Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) methods. Bayesian structure based odds ratios for the relevant variables and interactions were also calculated. Altogether 9 SNPs in 8 genes were associated with altered susceptibility to ALL. After correction for multiple testing, two associations remained significant. The genotype distribution of the MTHFD1 rs1076991 differed significantly between the ALL and control population. Analyzing the subtypes of the disease the GG genotype increased only the risk of B-cell ALL (p = 3.52x10(-4); OR = 2.00). The GG genotype of the rs3776455 SNP in the MTRR gene was associated with a significantly reduced risk to ALL (p = 1.21x10(-3); OR = 0.55), which resulted mainly from the reduced risk to B-cell and hyperdiploid-ALL. The TC genotype of the rs9909104 SNP in the SHMT1 gene was associated with a lower survival rate comparing it to the TT genotype (80.2% vs. 88.8%; p = 0.01). The BN-BMLA confirmed the main findings of the frequentist-based analysis and showed structural interactional maps and the probabilities of the different structural association types of the relevant SNPs especially in the hyperdiploid-ALL, involving additional SNPs in genes like TYMS, DHFR and GGH. We also investigated the statistical interactions and redundancies using structural model properties. These results gave further evidence that polymorphisms in the folate pathway could influence the ALL risk and the effectiveness of the therapy. It was also shown that in gene association studies the BN-BMLA could be a useful supplementary to the traditional frequentist-based statistical method

    Supersymmetric lattice fermions on the triangular lattice: superfrustration and criticality

    Get PDF
    We study a model for itinerant, strongly interacting fermions where a judicious tuning of the interactions leads to a supersymmetric Hamiltonian. On the triangular lattice this model is known to exhibit a property called superfrustration, which is characterized by an extensive ground state entropy. Using a combination of numerical and analytical methods we study various ladder geometries obtained by imposing doubly periodic boundary conditions on the triangular lattice. We compare our results to various bounds on the ground state degeneracy obtained in the literature. For all systems we find that the number of ground states grows exponentially with system size. For two of the models that we study we obtain the exact number of ground states by solving the cohomology problem. For one of these, we find that via a sequence of mappings the entire spectrum can be understood. It exhibits a gapped phase at 1/4 filling and a gapless phase at 1/6 filling and phase separation at intermediate fillings. The gapless phase separates into an exponential number of sectors, where the continuum limit of each sector is described by a superconformal field theory.Comment: 50 pages, 12 figures, 2 appendice

    Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants

    Get PDF
    RNA silencing is one of the main defense mechanisms employed by plants to fight viruses. In change, viruses have evolved silencing suppressor proteins to neutralize antiviral silencing. Since the endogenous and antiviral functions of RNA silencing pathway rely on common components, it was suggested that viral suppressors interfere with endogenous silencing pathway contributing to viral symptom development. In this work, we aimed to understand the effects of the tombusviral p19 suppressor on endogenous and antiviral silencing during genuine virus infection. We showed that ectopically expressed p19 sequesters endogenous small RNAs (sRNAs) in the absence, but not in the presence of virus infection. Our presented data question the generalized model in which the sequestration of endogenous sRNAs by the viral suppressor contributes to the viral symptom development. We further showed that p19 preferentially binds the perfectly paired ds-viral small interfering RNAs (vsiRNAs) but does not select based on their sequence or the type of the 5’ nucleotide. Finally, co-immunoprecipitation of sRNAs with AGO1 or AGO2 from virus-infected plants revealed that p19 specifically impairs vsiRNA loading into AGO1 but not AGO2. Our findings, coupled with the fact that p19-expressing wild type Cymbidium ringspot virus (CymRSV) overcomes the Nicotiana benthamiana silencing based defense killing the host, suggest that AGO1 is the main effector of antiviral silencing in this host-virus combination
    corecore