123 research outputs found

    A gyökfogó dokozahexaénsav mint agyvédő = Docosahexaenoic acid (DHA) as a free radical scavenger brain protector

    Get PDF
    Telítetlen zsírsavak (PUFA) fontos szerepet játszanak mint antioxidánsok az emberi testben, különös tekintettel az agyban. Lipidek szisztematikus számítási vizsgálatait az OTKA támogatás előtt már elkezdtük. A támogatás alatt 4 fő tématerületen értünk el eredményeket: Téma 1: Molekuláris konformció változások termodinamikai alapjai Egyszerű szerves molekulák, mint különböző szénhidrogén származékok, peptidek, folytonos termodinamikai fügvényeit állítottuk elő konformációs mozgások mentén. Téma 2: Zsirsavak konformációs információ Igazoltuk a PUFA-k flexibilátásbeli hasonlóságát a peptidekhez a potenciál felületek hasonlóságával. DHA a legfontosabb képviselője a PUFA családnak. Téma 3: Foszfolipidek konformációs információi Az első két téma eredmnyeinek felhasználásával egyszerű foszfolipid modelleket konstruáltunk. A két zsirsavlánc relativ helyzte, kölcsönhatásai, membránszerű elrendeződés esetén állt vizsgálataink homlokterében. Téma4 Szabadgyökök reakciói PUFA és PUFA modellekkel Szabadgyökök és reakcióik PUFA-val lipidek kettősrétegeiben biológiailag nagyon fontos folyamatok. Az E vitamin az egyik leghatékonyabb gyökfogó membránokban. A PUFA-kban mindig megtalálható allil-C-H kötések és különböző típusú gyökök reakcióinak kiterjedt vizsgálata folyt. | Polyunsaturated fatty acids (PUFA) play an important role as an antioxidant in the whole human body but more specifically in the brain. The overall project had 4 Topics: Topic 1 Fundamental Thermodynamics of Molecular Conformational Changes: Simple organic molecules were investigated in computing continues thermodynamic functions along conformational changes. These included a variety of compounds from hydrocarbons to peptides. Topic 2 Conformational information of fatty acid: Interestingly enough their felxibility was similar to that of peptides as could be judged from the similarity of their conformational potential energy surfaces. Topic 3 Conformational information of phospholipids: The results and experience obtained from the first two topics were used to construct simple phospholipids. The relative orientations of the two fatty acids in a phospholipid had to be studied to see if the nearly parallel arrangement within the lipid bilayer is enforced by nearest neighbour interaction or if such a geometry is an intrinsically stable structure. Topic 4 Free radical reactions with PUFA and PUFA models: Free radicals and their reactions with PUFA within the lipid bilayer are a biologically very important reactions. The generation of free radicals and their transformation as well as their reactions with allylic C-H bonds, which are always present is PUFA, has been studied in details

    Stable and habitable systems with two giant planets

    Full text link
    We have studied planetary systems which are similar to the Solar System and built up from three inner rocky planets (Venus, Earth, Mars) and two outer gas giants. The stability of the orbits of the inner planets is discussed in the cases of different masses of the gas planets. To demonstrate the results stability maps were made and it was found that Jupiter could be four times and Saturn could be three times more massive while the orbits of the inner planets stay stable. Similar calculations were made by changing the mass of the Sun. In this case the position of the rocky planets and the extension of the liquid water habitable and the UV habitable zones were studied for different masses of the Sun. It was found that the orbits of the planets were stable for values greater than 0.33 M_Sun where M_Sun is the mass of the Sun and at lower masses of the Sun (at about 0.8 M_Sun) only Venus, but for higher mass values (at about 1.2 M_Sun) Earth and also Mars are located in both habitable zones.Comment: 8 page

    Do theoretical physicists care about the protein-folding problem?

    Full text link
    The prediction of the biologically active native conformation of a protein is one of the fundamental challenges of structural biology. This problem remains yet unsolved mainly due to three factors: the partial knowledge of the effective free energy function that governs the folding process, the enormous size of the conformational space of a protein and, finally, the relatively small differences of energy between conformations, in particular, between the native one and the ones that make up the unfolded state. Herein, we recall the importance of taking into account, in a detailed manner, the many interactions involved in the protein folding problem (such as steric volume exclusion, Ramachandran forces, hydrogen bonds, weakly polar interactions, coulombic energy or hydrophobic attraction) and we propose a strategy to effectively construct a free energy function that, including the effects of the solvent, could be numerically tractable. It must be pointed out that, since the internal free energy function that is mainly described does not include the constraints of the native conformation, it could only help to reach the 'molten globule' state. We also discuss about the limits and the lacks from which suffer the simple models that we, physicists, love so much.Comment: 27 pages, 4 figures, LaTeX file, aipproc package. To be published in the book: "Meeting on Fundamental Physics 'Alberto Galindo'", Alvarez-Estrada R. F. et al. (Ed.), Madrid: Aula Documental, 200

    Ortho-Methoxy Group as a Mild Inhibitor of the Reactions Between Carboxylic Acid and Phenols

    Get PDF
    According to the current database of natural products, over 25,000 compounds contain a vanillyl ring in their structure. The reasoning behind the high occurrence of the vanillyl ring structure seemed to be poorly understood, specifically the preference for a methoxy-substituted phenol structure as opposed to its dihydroxy analogue. To better understand this, we investigated the reaction mechanisms of two methoxyphenol structures, in syn and anti conformations, two hydroxyphenol structures, also in syn and anti conformations, and phenol as a reference structure, with acetic acid. Of the starting structures, the syn hydroxyphenol was found to be kinetically the most reactive, and formed the most stable product, while both hydroxyl-substituted phenols reacted more favorably with acetic acid than the methoxyphenols. A preference for the methoxyphenol molecule may exist as a way to hinder the formation of stable covalent bonds between natural products and cellular components. This work is licensed under a Creative Commons Attribution 4.0 International License

    How weak an acid can be? Variations of H-bond and/or van der Waals Interaction of Weak Acids

    Get PDF
    Abstract Complex formation ability and stability of both weak and super-weak acids was studied by mean of in silico determined thermodynamic data of the complexes. While weak acids act like Brønsted acids forming hydrogen bond type Brønsted complexes, super-weak acids form Lewis complexes via van der Waals interaction. Unlike in the former type, upon complexation, C-H distances changes insignificantly, yet the complex formation is energy driven in the terms of zero-point corrected Energies, ΔEzp < 0 kcal mol−1, which supports the Lewis complex formation, with the exception of CH4, an extremely weak acid

    Glutathione as a Prebiotic Answer to alpha-Peptide Based Life.

    Get PDF
    The energetics of peptide bond formation is an important factor not only in the design of chemical peptide synthesis, but it also has a role in protein biosynthesis. In this work, quantum chemical calculations at 10 different levels of theory including G3MP2B3 were performed on the energetics of glutathione formation. The strength of the peptide bond is found to be closely related to the acid strength of the to-be N-terminal and the basicity of the to-be C-terminal amino acid. It is shown that the formation of the first peptide activates the amino acid for the next condensation step, manifested in bacterial protein synthesis where the first step is the formation of an N-formylmethionine dipeptide. The possible role of glutathione in prebiotic molecular evolution is also analyzed. The implications of the thermodynamics of peptide bond formation in prebiotic peptide formation as well as in the preference of alpha- instead of beta- or gamma-amino acids are discussed. An empirical correction is proposed for the compensation of the error due to the incapability of continuum solvation models in describing the change of the first solvation shell when a peptide bond is formed from two zwitterions accompanied by the disappearance of one ion pair

    A theoretical study of the stability of disulfide bridges in various β-sheet structures of protein segment models

    Get PDF
    Electron structure calculations are used to explore stabilization effects of disulfide bridges in a (Ala–Cys–Ala–Cys–Ala)2 β-sheet model both in the parallel and the anti-parallel (103142 and 143102) arrangements. Stabilities were calculated using a redox reaction involving a weak oxidizing agent (1,4-benzoquinone). The results show that both inter- and intra-strand disulfide SS-bridges stabilize the β-sheet backbone fold. However, inter-strand SS-bridges give more stability than their intra-strand counterparts. For both single and double disulfide linked conformations, stabilization was larger for the parallel than for the anti-parallel β-sheet arrangements

    Vitamin E models - The effect of heteroatom substitution in 2-ethyl-2-methyl chroman and 2-ethyl-2-methyl-6-hydroxychroman

    Get PDF
    The molecular conformations of shortened molecular models of vitamin E (tocopherol and tocotrienol) and their sulfur and selenium congeners were studied computationally at the DFT level of theory [B3LYP/6-31G(d)]. The sequence of stabilization by the various heteroatoms was found to be the following: O similar to Se > S. On the basis of the present structural results it seems that the seleno-congener of vitamin E is a distinct possibility
    corecore