131 research outputs found

    Receptor-Mediated Activation of Canonical Wnt Signaling

    Get PDF

    Examination of effects of GSK3β phosphorylation, β-catenin phosphorylation, and β-catenin degradation on kinetics of Wnt signaling pathway using computational method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent experiments have explored effects of activities of kinases other than the well-studied GSK3β, in wnt pathway signaling, particularly at the level of β-catenin. It has also been found that the kinase PKA attenuates β-catenin degradation. However, the effects of these kinases on the level and degradation of β-catenin and the resulting downstream transcription activity remain to be clarified. Furthermore, the effect of GSK3β phosphorylation on the β-catenin level has not been examined computationally. In the present study, the effects of phosphorylation of GSK3β and of phosphorylations and degradation of β-catenin on the kinetics of the wnt signaling pathway were examined computationally.</p> <p>Methods</p> <p>The well-known computational Lee-Heinrich kinetic model of the wnt pathway was modified to include these effects. The rate laws of reactions in the modified model were solved numerically to examine these effects on β-catenin level.</p> <p>Results</p> <p>The computations showed that the β-catenin level is almost linearly proportional to the phosphorylation activity of GSK3β. The dependence of β-catenin level on the phosphorylation and degradation of free β-catenin and downstream TCF activity can be analyzed with an approximate, simple function of kinetic parameters for added reaction steps associated with effects examined, rationalizing the experimental results.</p> <p>Conclusion</p> <p>The phosphorylations of β-catenin by kinases other than GSK3β involve free unphorphorylated β-catenin rather than GSK3β-phosphorylated β-catenin*. In order to account for the observed enhancement of TCF activity, the β-catenin dephosphorylation step is essential, and the kinetic parameters of β-catenin phosphorylation and degradation need to meet a condition described in the main text. These findings should be useful for future experiments.</p

    Toward a quantitative understanding of the Wnt/beta-catenin pathway through simulation and experiment

    Get PDF
    Wnt signaling regulates cell survival, proliferation, and differentiation throughout development and is aberrantly regulated in cancer. The pathway is activated when Wnt ligands bind to specific receptors on the cell surface, resulting in the stabilization and nuclear accumulation of the transcriptional co‐activator β‐catenin. Mathematical and computational models have been used to study the spatial and temporal regulation of the Wnt/β‐catenin pathway and to investigate the functional impact of mutations in key components. Such models range in complexity, from time‐dependent, ordinary differential equations that describe the biochemical interactions between key pathway components within a single cell, to complex, multiscale models that incorporate the role of the Wnt/β‐catenin pathway target genes in tissue homeostasis and carcinogenesis. This review aims to summarize recent progress in mathematical modeling of the Wnt pathway and to highlight new biological results that could form the basis for future theoretical investigations designed to increase the utility of theoretical models of Wnt signaling in the biomedical arena

    Differential Modulation of TCF/LEF-1 Activity by the Soluble LRP6-ICD

    Get PDF
    The canonical Wnt/β-catenin (Wnt) pathway is a master transcriptional regulatory signaling pathway that controls numerous biological processes including proliferation and differentiation. As such, transcriptional activity of the Wnt pathway is tightly regulated and/or modulated by numerous proteins at the level of the membrane, cytosol and/or nucleus. In the nucleus, transcription of Wnt target genes by TCF/LEF-1 is repressed by the long Groucho/TLE co-repressor family. However, a truncated member of the Groucho/TLE family, amino terminal enhancer of Split (AES) can positively modulate TCF/LEF-1 activity by antagonizing long Groucho/TLE members in a dominant negative manner. We have previously shown the soluble intracellular domain of the LRP6 receptor, a receptor required for activation of the Wnt pathway, can positively regulate transcriptional activity within the Wnt pathway. In the current study, we show the soluble LRP6 intracellular domain (LRP6-ICD) can also translocate to the nucleus in CHO and HEK 293T cells and in contrast to cytosolic LRP6-ICD; nuclear LRP6-ICD represses TCF/LEF-1 activity. In agreement with previous reports, we show AES enhances TCF/LEF-1 mediated reporter transcription and further we demonstrate that AES activity is spatially regulated in HEK 293T cells. LRP6-ICD interacts with AES exclusively in the nucleus and represses AES mediated TCF/LEF-1 reporter transcription. These results suggest that LRP6-ICD can differentially modulate Wnt pathway transcriptional activity depending upon its subcellular localization and differential protein-protein interactions

    Inhibition of GSK3 Phosphorylation of β-Catenin via Phosphorylated PPPSPXS Motifs of Wnt Coreceptor LRP6

    Get PDF
    The Wnt/β-catenin signaling pathway plays essential roles in cell proliferation and differentiation, and deregulated β-catenin protein levels lead to many types of human cancers. On activation by Wnt, the Wnt co-receptor LDL receptor related protein 6 (LRP6) is phosphorylated at multiple conserved intracellular PPPSPXS motifs by glycogen synthase kinase 3 (GSK3) and casein kinase 1 (CK1), resulting in recruitment of the scaffolding protein Axin to LRP6. As a result, β-catenin phosphorylation by GSK3 is inhibited and β-catenin protein is stabilized. However, how LRP6 phosphorylation and the ensuing LRP6-Axin interaction lead to the inhibition of β-catenin phosphorylation by GSK3 is not fully understood. In this study, we reconstituted Axin-dependent β-catenin phosphorylation by GSK3 and CK1 in vitro using recombinant proteins, and found that the phosphorylated PPPSPXS peptides directly inhibit β-catenin phosphorylation by GSK3 in a sequence and phosphorylation-dependent manner. This inhibitory effect of phosphorylated PPPSPXS motifs is direct and specific for GSK3 phosphorylation of β-catenin at Ser33/Ser37/Thr41 but not for CK1 phosphorylation of β-catenin at Ser45, and is independent of Axin function. We also show that a phosphorylated PPPSPXS peptide is able to activate Wnt/β-catenin signaling and to induce axis duplication in Xenopus embryos, presumably by inhibition of GSK3 in vivo. Based on these observations, we propose a working model that Axin recruitment to the phosphorylated LRP6 places GSK3 in the vicinity of multiple phosphorylated PPPSPXS motifs, which directly inhibit GSK3 phosphorylation of β-catenin. This model provides a possible mechanism to account, in part, for inhibition of β-catenin phosphorylation by Wnt-activated LRP6

    Direct Inhibition of GSK3β by the Phosphorylated Cytoplasmic Domain of LRP6 in Wnt/β-Catenin Signaling

    Get PDF
    Wnt/β-catenin signaling plays a central role in development and is also involved in a diverse array of diseases. Binding of Wnts to the coreceptors Frizzled and LRP6/5 leads to phosphorylation of PPPSPxS motifs in the LRP6/5 intracellular region and the inhibition of GSK3β bound to the scaffold protein Axin. However, it remains unknown how GSK3β is specifically inhibited upon Wnt stimulation. Here, we show that overexpression of the intracellular region of LRP6 containing a Ser/Thr rich cluster and a PPPSPxS motif impairs the activity of GSK3β in cells. Synthetic peptides containing the PPPSPxS motif strongly inhibit GSK3β in vitro only when they are phosphorylated. Microinjection of these peptides into Xenopus embryos confirms that the phosphorylated PPPSPxS motif potentiates Wnt-induced second body axis formation. In addition, we show that the Ser/Thr rich cluster of LRP6 plays an important role in LRP6 binding to GSK3β. These observations demonstrate that phosphorylated LRP6/5 both recruits and directly inhibits GSK3β using two distinct portions of its cytoplasmic sequence, and suggest a novel mechanism of activation in this signaling pathway

    Updating the Wnt pathways

    Full text link
    In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases

    Resultatmanipulering under Covid-19 : En studie på svenska noterade bolag

    No full text
    Tidigare forskning har visat att bolag har olika incitament för att manipulera sina resultat och att det tenderar att ske mer ofta under finansiella kriser. Studien syftar till att undersöka om det finns ett samband mellan globala kriser och resultatmanipulering i svenska bolag med regressionsanalys. Urvalet i studien baseras på Small-, Mid- och Large-cap bolag listade på Nasdaq OMX Stockholm. Studien utgörs av 220 observationer under åren 2017, 2018, 2019, 2020 och 2021. Resultatmanipulation via totala periodiseringar utgör studiens beroende variabel och beräknas med den Modifierade Jones Modellen. Studiens oberoende variabler utgörs av 1 dividerat med totala tillgångarna för föregående period, förändring i kontanter samt anläggningstillgångar. Regressionsanalysen påvisar inget statistiskt signifikant bevis för att svenska bolag resultatmanipulerar mer eller mindre under kriser
    corecore