3,555 research outputs found

    Hormigón de alta densidad: una excelente solución para obras marítimas

    Full text link
    [ES] Durante los últimos años la necesidad de proteger el medioambiente ha pasado a ser una de las prioridades de la sociedad y por ende de las administraciones públicas, las empresas de construcción y los suministradores de productos. Una forma de contribuir a la sostenibilidad es impulsar el uso de subproductos industriales como materiales componentes del hormigón, como es uno de los objetivos del “Plan de Prevención y Gestión de Residuos de la CAPV 2020”. En la Comunidad Autónoma del País Vasco existen unas 14 Acerías de Arco Eléctrico que generan aproximadamente el 50% de la escoria negra producida en España, del orden de 800.000 Tm al año. Este residuo puede transformarse en áridos siderúrgicos aptos para diferentes aplicaciones, sometiéndolo a un proceso de valorización. En dicho proceso, la escoria negra se somete a la separación magnética de la fracción metálica que lleva incorporada, a una estabilización o inertización y a un envejecimiento del material. Finalmente la escoria es triturada y clasificada por tamaño para las diferentes aplicaciones, para transformarse en árido siderúrgico. El árido siderúrgico se caracteriza por su elevada dureza, su gran resistencia al desgaste y su alta densidad en comparación con los áridos naturales, por lo que es idóneo para utilizar en la fabricación de hormigones de pavimentos y en hormigones de alta densidad. Una de las aplicaciones más interesantes de este tipo de hormigón es la construcción de bloques de alta densidad para las obras marítimas y portuarias, por lo que su uso es cada vez más frecuente en los Puertos de Bizkaia. En esta ocasión les transmitiremos la experiencia que ha supuesto el suministro de este tipo de hormigón siderúrgico en el Proyecto Constructivo de Emergencia del Refuerzo del Dique de Abrigo del Puerto de Bermeo, obra ejecutada por la Ute Espaldón de Bermeo (Sociedad Anónima de Trabajos y Obras - Bycam Servicios, Edificios e Infraestructuras, S.A.) y suministrada por Hormigones y Minas S.A. Grupo HeidelbergCement, bajo la Dirección del Servicio Territorial de Puertos de Bizkaia.Cruz Ramos, D.; Lozano, JA. (2018). Hormigón de alta densidad: una excelente solución para obras marítimas. En HAC 2018. V Congreso Iberoamericano de hormigón autocompactable y hormigones especiales. Editorial Universitat Politècnica de València. 649-658. https://doi.org/10.4995/HAC2018.2018.5558OCS64965

    Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis

    Full text link
    [EN] Plant growth is the result of the coordinated photosynthesis-mediated assimilation of oxidized forms of C, N and S. Nitrate is the predominant N source in soils and its reductive assimilation requires the successive activities of soluble cytosolic NADH-nitrate reductases (NR) and plastid stroma ferredoxin-nitrite reductases (NiR) allowing the conversion of nitrate to nitrite and then to ammonium. However, nitrite, instead of being reduced to ammonium in plastids, can be reduced to nitric oxide (NO) in mitochondria, through a process that is relevant under hypoxic conditions, or in the cytoplasm, through a side-reaction catalyzed by NRs. We use a loss-of-function approach, based on CRISPR/Cas9-mediated genetic edition, and gain-of-function, using transgenic overexpressing HA-tagged Arabidopsis NiR1 to characterize the role of this enzyme in controlling plant growth, and to propose that the NO-related post-translational modifications, by S-nitrosylation of key C residues, might inactivate NiR1 under stress conditions. NiR1 seems to be a key target in regulating nitrogen assimilation and NO homeostasis, being relevant to the control of both plant growth and performance under stress conditions. Because most higher plants including crops have a single NiR, the modulation of its function might represent a relevant target for agrobiotechnological purposes.This research was funded by BIO2014-56067-P and BIO2017-82945-P grants from the Spanish Ministry of Economy, Industry and Competitiveness and Fondo Europeo de Desarrollo Regional (FEDER) funds.Costa-Broseta, Á.; Castillo López Del Toro, MC.; Leon Ramos, J. (2020). Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis. International Journal of Molecular Sciences. 21(19):1-13. https://doi.org/10.3390/ijms211972701132119Solomonson, L. P., & Barber, M. J. (1990). Assimilatory Nitrate Reductase: Functional Properties and Regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 41(1), 225-253. doi:10.1146/annurev.pp.41.060190.001301Knaff, D. B., & Hirasawa, M. (1991). Ferredoxin-dependent chloroplast enzymes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1056(2), 93-125. doi:10.1016/s0005-2728(05)80277-4Wang, R., Xing, X., & Crawford, N. (2007). Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots. Plant Physiology, 145(4), 1735-1745. doi:10.1104/pp.107.108944Tanaka, S., Ida, S., Irifune, K., Oeda, K., & Morikawa, H. (1994). Nucleotide sequence of a gene for nitrite reductase from Arabidopsis thaliana. DNA Sequence, 5(1), 57-61. doi:10.3109/10425179409039705LEA, P. J., & MIFLIN, B. J. (1974). Alternative route for nitrogen assimilation in higher plants. Nature, 251(5476), 614-616. doi:10.1038/251614a0Gupta, K. J., & Igamberdiev, A. U. (2011). The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion, 11(4), 537-543. doi:10.1016/j.mito.2011.03.005Rockel, P., Strube, F., Rockel, A., Wildt, J., & Kaiser, W. M. (2002). Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany, 53(366), 103-110. doi:10.1093/jexbot/53.366.103Bender, D., & Schwarz, G. (2018). Nitrite-dependent nitric oxide synthesis by molybdenum enzymes. FEBS Letters, 592(12), 2126-2139. doi:10.1002/1873-3468.13089Kolbert, Z., Barroso, J. B., Brouquisse, R., Corpas, F. J., Gupta, K. J., Lindermayr, C., … Hancock, J. T. (2019). A forty year journey: The generation and roles of NO in plants. Nitric Oxide, 93, 53-70. doi:10.1016/j.niox.2019.09.006Astier, J., & Lindermayr, C. (2012). Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. International Journal of Molecular Sciences, 13(12), 15193-15208. doi:10.3390/ijms131115193Jain, P., & Bhatla, S. C. (2018). Molecular mechanisms accompanying nitric oxide signalling through tyrosine nitration and S-nitrosylation of proteins in plants. Functional Plant Biology, 45(2), 70. doi:10.1071/fp16279Calatrava, V., Chamizo-Ampudia, A., Sanz-Luque, E., Ocaña-Calahorro, F., Llamas, A., Fernandez, E., & Galvan, A. (2017). How Chlamydomonas handles nitrate and the nitric oxide cycle. Journal of Experimental Botany, 68(10), 2593-2602. doi:10.1093/jxb/erw507De Montaigu, A., Sanz-Luque, E., Galván, A., & Fernández, E. (2010). A Soluble Guanylate Cyclase Mediates Negative Signaling by Ammonium on Expression of Nitrate Reductase in Chlamydomonas  . The Plant Cell, 22(5), 1532-1548. doi:10.1105/tpc.108.062380Kim, J. Y., Kwon, Y. J., Kim, S.-I., Kim, D. Y., Song, J. T., & Seo, H. S. (2016). Ammonium Inhibits Chromomethylase 3-Mediated Methylation of the Arabidopsis Nitrate Reductase Gene NIA2. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01161Castillo, M.-C., Coego, A., Costa-Broseta, Á., & León, J. (2018). Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways. Journal of Experimental Botany, 69(21), 5265-5278. doi:10.1093/jxb/ery286Wang, J., Wang, Y., Lv, Q., Wang, L., Du, J., Bao, F., & He, Y.-K. (2017). Nitric oxide modifies root growth by S-nitrosylation of plastidial glyceraldehyde-3-phosphate dehydrogenase. Biochemical and Biophysical Research Communications, 488(1), 88-94. doi:10.1016/j.bbrc.2017.05.012Chen, Z. J., & Sun, L. J. (2009). Nonproteolytic Functions of Ubiquitin in Cell Signaling. Molecular Cell, 33(3), 275-286. doi:10.1016/j.molcel.2009.01.014Thrower, J. S. (2000). Recognition of the polyubiquitin proteolytic signal. The EMBO Journal, 19(1), 94-102. doi:10.1093/emboj/19.1.94Chu, C.-C., & Li, H. (2018). Developmental regulation of protein import into plastids. Photosynthesis Research, 138(3), 327-334. doi:10.1007/s11120-018-0546-4Hirasawa, M., Tollin, G., Salamon, Z., & Knaff, D. B. (1994). Transient kinetic and oxidation-reduction studies of spinach ferrodoxin: nitrate oxidoreductase. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1185(3), 336-345. doi:10.1016/0005-2728(94)90249-6Hirasawa, M., Tripathy, J. N., Somasundaram, R., Johnson, M. K., Bhalla, M., Allen, J. P., & Knaff, D. B. (2009). The Interaction of Spinach Nitrite Reductase with Ferredoxin: A Site-Directed Mutation Study. Molecular Plant, 2(3), 407-415. doi:10.1093/mp/ssn098Y., M.-G.-T., P., R., T., M., I., Q., M., L., W., K., & J., M.-G. (2002). Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta, 215(5), 708-715. doi:10.1007/s00425-002-0816-3Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xChiu, J., Tillett, D., Dawes, I. W., & March, P. E. (2008). Site-directed, Ligase-Independent Mutagenesis (SLIM) for highly efficient mutagenesis of plasmids greater than 8kb. Journal of Microbiological Methods, 73(2), 195-198. doi:10.1016/j.mimet.2008.02.013Wang, Z.-P., Xing, H.-L., Dong, L., Zhang, H.-Y., Han, C.-Y., Wang, X.-C., & Chen, Q.-J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology, 16(1). doi:10.1186/s13059-015-0715-0Davenport, S., Le Lay, P., & Sanchez-Tamburrrino, J. P. (2015). Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase. Plant Physiology and Biochemistry, 97, 96-107. doi:10.1016/j.plaphy.2015.09.013Takahashi, M., Sasaki, Y., Ida, S., & Morikawa, H. (2001). Nitrite Reductase Gene Enrichment Improves Assimilation of NO2 in Arabidopsis. Plant Physiology, 126(2), 731-741. doi:10.1104/pp.126.2.731Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L., & León, J. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 8(392). doi:10.1126/scisignal.aaa7981Guo, F.-Q., Okamoto, M., & Crawford, N. M. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.108677

    NIN-like protein7 and PROTEOLYSIS6 functional interaction enhances tolerance to sucrose, ABA, and submergence

    Full text link
    [EN] Nitrate (NO3) assimilation and signaling regulate plant growth through the relevant function of the transcription factor NIN-like Protein7 (NLP7). NO3 is also the main source for plants to produce nitric oxide (NO), which regulates growth and stress responses. NO-mediated regulation requires efficient sensing via the PROTEOLYSIS6 (PRT6)-mediated proteasome-triggered degradation of group VII of ethylene response transcription factors through the Cys/Arg N-degron pathway. The convergence of NO3 signaling and N-degron proteolysis on NO-mediated regulation remains largely unknown. Here, we investigated the functional interaction between NLP7 and PRT6 using Arabidopsis (Arabidopsis thaliana) double prt6 nlp7 mutant plants as well as complementation lines overexpressing NLP7 in different mutant genetic backgrounds. prt6 nlp7 mutant plants displayed several potentiated prt6 characteristic phenotypes, including slower vegetative growth, increased NO content, and diminished tolerance to abiotic stresses such as high-sucrose concentration, abscisic acid, and hypoxia-reoxygenation. Although NLP7 has an N-terminus that could be targeted by the N-degron proteolytic pathway, it was not a PRT6 substrate. The potential PRT6- and NO-regulated nucleocytoplasmic translocation of NLP7, which is likely modulated by posttranslational modifications, is proposed to act as a regulatory loop to control NO homeostasis and action.This work was supported by MINECO from Spain grant (BIO2017-82945-P), CSIC (2020AEP055), Generalitat Valenciana (PROMETEO/2019/021 grant), and FEDER funds from European Union.Castillo López Del Toro, MC.; Costa-Broseta, Á.; Gayubas, B.; Leon Ramos, J. (2021). NIN-like protein7 and PROTEOLYSIS6 functional interaction enhances tolerance to sucrose, ABA, and submergence. Plant Physiology. 187(4):2731-2748. https://doi.org/10.1093/plphys/kiab38227312748187

    Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation

    Full text link
    [EN] Plant tolerance to freezing temperatures is governed by endogenous components and environmental factors. Exposure to low non-freezing temperatures is a key factor in the induction of freezing tolerance in the process called cold acclimation. The role of nitric oxide (NO) in cold acclimation was explored in Arabidopsis using triple nia1nia2noa1-2 mutants that are impaired in the nitrate-dependent and nitrate-independent pathways of NO production, and are thus NO deficient. Here, we demonstrate that cold-induced NO accumulation is required to promote the full cold acclimation response through C-repeat Binding Factor (CBF)-dependent gene expression, as well as the CBF-independent expression of other cold-responsive genes such as Oxidation-Related Zinc Finger 2 (ZF/OZF2). NO deficiency also altered abscisic acid perception and signaling and the cold-induced production of anthocyanins, which are additional factors involved in cold acclimation.We thank Isabel Lopez-Diaz and Esther Carrera for the hormone quantification carried out at the Plant Hormone Quantification Service, IBMCP, Valencia, Spain. This work was supported by grants from MINECO of Spain Government and FEDER EU funds [BIO2014-56067-P, BIO2017-82945-P to JL and BIO2016-79187-R to JS].Costa-Broseta, Á.; Perea-Resa, C.; Castillo, M.; Ruíz, MF.; Salinas, J.; Leon Ramos, J. (2019). Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation. Journal of Experimental Botany. 70(12):3283-3296. https://doi.org/10.1093/jxb/erz115S328332967012Adams, S., & Carré, I. A. (2011). Downstream of the plant circadian clock: output pathways for the control of physiology and development. Essays in Biochemistry, 49, 53-69. doi:10.1042/bse0490053Arakawa, T., & Timasheff, S. N. (1982). Stabilization of protein structure by sugars. Biochemistry, 21(25), 6536-6544. doi:10.1021/bi00268a033Astier, J., & Lindermayr, C. (2012). Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. International Journal of Molecular Sciences, 13(12), 15193-15208. doi:10.3390/ijms131115193Atamian, H. S., & Harmer, S. L. (2016). Circadian regulation of hormone signaling and plant physiology. Plant Molecular Biology, 91(6), 691-702. doi:10.1007/s11103-016-0477-4Barrero-Gil, J., & Salinas, J. (2013). Post-translational regulation of cold acclimation response. Plant Science, 205-206, 48-54. doi:10.1016/j.plantsci.2013.01.008Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A., & Lamb, C. (2000). Activation Tagging Identifies a Conserved MYB Regulator of Phenylpropanoid Biosynthesis. The Plant Cell, 12(12), 2383-2393. doi:10.1105/tpc.12.12.2383Cantrel, C., Vazquez, T., Puyaubert, J., Rezé, N., Lesch, M., Kaiser, W. M., … Baudouin, E. (2010). Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytologist, 189(2), 415-427. doi:10.1111/j.1469-8137.2010.03500.xCastillo, M. C., & León, J. (2008). Expression of the β-oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 59(8), 2171-2179. doi:10.1093/jxb/ern079Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L., & León, J. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 8(392), ra89-ra89. doi:10.1126/scisignal.aaa7981Catala, R., Medina, J., & Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences, 108(39), 16475-16480. doi:10.1073/pnas.1107161108Chen, M., & Thelen, J. J. (2016). Acyl-lipid desaturase 1primes cold acclimation response inArabidopsis. Physiologia Plantarum, 158(1), 11-22. doi:10.1111/ppl.12448Costa-Broseta, Á., Perea-Resa, C., Castillo, M.-C., Ruíz, M. F., Salinas, J., & León, J. (2018). Nitric Oxide Controls Constitutive Freezing Tolerance in Arabidopsis by Attenuating the Levels of Osmoprotectants, Stress-Related Hormones and Anthocyanins. Scientific Reports, 8(1). doi:10.1038/s41598-018-27668-8Cuevas, J. C., López-Cobollo, R., Alcázar, R., Zarza, X., Koncz, C., Altabella, T., … Ferrando, A. (2008). Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature. Plant Physiology, 148(2), 1094-1105. doi:10.1104/pp.108.122945Diaz, C., Saliba-Colombani, V., Loudet, O., Belluomo, P., Moreau, L., Daniel-Vedele, F., … Masclaux-Daubresse, C. (2006). Leaf Yellowing and Anthocyanin Accumulation are Two Genetically Independent Strategies in Response to Nitrogen Limitation in Arabidopsis thaliana. Plant and Cell Physiology, 47(1), 74-83. doi:10.1093/pcp/pci225Eremina, M., Unterholzner, S. J., Rathnayake, A. I., Castellanos, M., Khan, M., Kugler, K. G., … Poppenberger, B. (2016). Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proceedings of the National Academy of Sciences, 113(40), E5982-E5991. doi:10.1073/pnas.1611477113Fan, J., Chen, K., Amombo, E., Hu, Z., Chen, L., & Fu, J. (2015). Physiological and Molecular Mechanism of Nitric Oxide (NO) Involved in Bermudagrass Response to Cold Stress. PLOS ONE, 10(7), e0132991. doi:10.1371/journal.pone.0132991Guo, F.-Q. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770Hannah, M. A., Heyer, A. G., & Hincha, D. K. (2005). A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana. PLoS Genetics, 1(2), e26. doi:10.1371/journal.pgen.0010026Igamberdiev, A. U., Ratcliffe, R. G., & Gupta, K. J. (2014). Plant mitochondria: Source and target for nitric oxide. Mitochondrion, 19, 329-333. doi:10.1016/j.mito.2014.02.003Jensen, M. K., Lindemose, S., de Masi, F., Reimer, J. J., Nielsen, M., Perera, V., … Skriver, K. (2013). ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio, 3(1), 321-327. doi:10.1016/j.fob.2013.07.006Jeon, J., Kim, N. Y., Kim, S., Kang, N. Y., Novák, O., Ku, S.-J., … Kim, J. (2010). A Subset of Cytokinin Two-component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. Journal of Biological Chemistry, 285(30), 23371-23386. doi:10.1074/jbc.m109.096644Kakei, Y., & Shimada, Y. (2014). AtCAST3.0 Update: A Web-Based Tool for Analysis of Transcriptome Data by Searching Similarities in Gene Expression Profiles. Plant and Cell Physiology, 56(1), e7-e7. doi:10.1093/pcp/pcu174Krol, M., Gray, G. R., Huner, N. P. A., Hurry, V. M., Öquist, G., & Malek, L. (1995). Low-temperature stress and photoperiod affect an increased tolerance to photoinhibition in Pinus banksiana seedlings. Canadian Journal of Botany, 73(8), 1119-1127. doi:10.1139/b95-122Lee, H. G., & Seo, P. J. (2015). The MYB 96– HHP module integrates cold and abscisic acid signaling to activate the CBF – COR pathway in Arabidopsis. The Plant Journal, 82(6), 962-977. doi:10.1111/tpj.12866León, J., Castillo, M. C., Coego, A., Lozano-Juste, J., & Mir, R. (2013). Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. Journal of Experimental Botany, 65(4), 907-921. doi:10.1093/jxb/ert454Li, D., Li, Y., Zhang, L., Wang, X., Zhao, Z., Tao, Z., … Yang, Y. (2014). Arabidopsis ABA Receptor RCAR1/PYL9 Interacts with an R2R3-Type MYB Transcription Factor, AtMYB44. International Journal of Molecular Sciences, 15(5), 8473-8490. doi:10.3390/ijms15058473Lozano-Juste, J., Colom-Moreno, R., & León, J. (2011). In vivo protein tyrosine nitration in Arabidopsis thaliana. Journal of Experimental Botany, 62(10), 3501-3517. doi:10.1093/jxb/err042Lozano-Juste, J., & León, J. (2009). Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023Morishita, T., Kojima, Y., Maruta, T., Nishizawa-Yokoi, A., Yabuta, Y., & Shigeoka, S. (2009). Arabidopsis NAC Transcription Factor, ANAC078, Regulates Flavonoid Biosynthesis under High-light. Plant and Cell Physiology, 50(12), 2210-2222. doi:10.1093/pcp/pcp159Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00170Park, S., Lee, C.-M., Doherty, C. J., Gilmour, S. J., Kim, Y., & Thomashow, M. F. (2015). Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. The Plant Journal, 82(2), 193-207. doi:10.1111/tpj.12796Perea-Resa, C., Rodríguez-Milla, M. A., Iniesto, E., Rubio, V., & Salinas, J. (2017). Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. Molecular Plant, 10(6), 791-804. doi:10.1016/j.molp.2017.03.012Persak, H., & Pitzschke, A. (2014). Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress. International Journal of Molecular Sciences, 15(2), 2517-2537. doi:10.3390/ijms15022517Petroni, K., & Tonelli, C. (2011). Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 181(3), 219-229. doi:10.1016/j.plantsci.2011.05.009PUYAUBERT, J., & BAUDOUIN, E. (2014). New clues for a cold case: nitric oxide response to low temperature. Plant, Cell & Environment, 37(12), 2623-2630. doi:10.1111/pce.12329Rahman, A. (2012). Auxin: a regulator of cold stress response. Physiologia Plantarum, 147(1), 28-35. doi:10.1111/j.1399-3054.2012.01617.xResponses of Poplar to Chilling Temperatures: Proteomic and Physiological Aspects. (2004). Plant Biology, 6(1), 81-90. doi:10.1055/s-2004-815733Reyes-Diaz, M., Ulloa, N., Zuniga-Feest, A., Gutierrez, A., Gidekel, M., Alberdi, M., … Bravo, L. A. (2006). Arabidopsis thaliana avoids freezing by supercooling. Journal of Experimental Botany, 57(14), 3687-3696. doi:10.1093/jxb/erl125Richter, R., Bastakis, E., & Schwechheimer, C. (2013). Cross-Repressive Interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the Control of Greening, Cold Tolerance, and Flowering Time in Arabidopsis. Plant Physiology, 162(4), 1992-2004. doi:10.1104/pp.113.219238Rubin, G., Tohge, T., Matsuda, F., Saito, K., & Scheible, W.-R. (2009). Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis. The Plant Cell, 21(11), 3567-3584. doi:10.1105/tpc.109.067041Schulz, E., Tohge, T., Zuther, E., Fernie, A. R., & Hincha, D. K. (2016). Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Scientific Reports, 6(1). doi:10.1038/srep34027Seo, M., Jikumaru, Y., & Kamiya, Y. (2011). Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Methods in Molecular Biology, 99-111. doi:10.1007/978-1-61779-231-1_7Shi, Y., Ding, Y., & Yang, S. (2018). Molecular Regulation of CBF Signaling in Cold Acclimation. Trends in Plant Science, 23(7), 623-637. doi:10.1016/j.tplants.2018.04.002Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., & Perata, P. (2005). Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis. Plant Physiology, 140(2), 637-646. doi:10.1104/pp.105.072579Soubeyrand, E., Basteau, C., Hilbert, G., van Leeuwen, C., Delrot, S., & Gomès, E. (2014). Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry, 103, 38-49. doi:10.1016/j.phytochem.2014.03.024Takahashi, D., Kawamura, Y., & Uemura, M. (2016). Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. Journal of Experimental Botany, 67(17), 5203-5215. doi:10.1093/jxb/erw279Thomashow, M. F. (1999). PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1), 571-599. doi:10.1146/annurev.arplant.50.1.571Wang, X., Bian, Y., Cheng, K., Zou, H., Sun, S. S.-M., & He, J.-X. (2012). A Comprehensive Differential Proteomic Study of Nitrate Deprivation inArabidopsisReveals Complex Regulatory Networks of Plant Nitrogen Responses. Journal of Proteome Research, 11(4), 2301-2315. doi:10.1021/pr2010764Weiser, C. J. (1970). Cold Resistance and Injury in Woody Plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science, 169(3952), 1269-1278. doi:10.1126/science.169.3952.1269Zhai, H., Bai, X., Zhu, Y., Li, Y., Cai, H., Ji, W., … Li, J. (2010). A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis. Biochemical and Biophysical Research Communications, 394(4), 1018-1023. doi:10.1016/j.bbrc.2010.03.114Zhao, M.-G., Chen, L., Zhang, L.-L., & Zhang, W.-H. (2009). Nitric Reductase-Dependent Nitric Oxide Production Is Involved in Cold Acclimation and Freezing Tolerance in Arabidopsis. Plant Physiology, 151(2), 755-767. doi:10.1104/pp.109.140996Zhao, R., Sheng, J., Lv, S., Zheng, Y., Zhang, J., Yu, M., & Shen, L. (2011). Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biology and Technology, 62(2), 121-126. doi:10.1016/j.postharvbio.2011.05.01

    Overweight or Obesity, Gender, and Age Influence on High School Students of the City of Toluca’s Physical Fitness

    Get PDF
    Articulo que informa de la relación del sobrepeso u obesidad sobre la condición física de estudiantes de preparatoriaMaterial and Method. This is a prospective, cross-sectional, and correlational study with a probabilistic sampling in which 150 teenagers from three different high schools from the city of Toluca, Mexico, aged 15–17, were assessed. Objective. To determine if weight, age, and gender have an influence on physical fitness evaluated with the EUROFIT and ALPHA-FITNESS batteries. Results. Women have a higher overweight and obesity rate than men (3 : 1). Adolescents who have normal weight have regular physical fitness (74.9%). When comparing genders we found that men have a higher mean than women in the tests, except for skinfold thickness and waist circumference. Age was only correlated with the plate tapping test ( = 0.001).There are significant differences in the standing broad jump test and the Course-Navette of the EUROFIT and ALPHA-FITNESS batteries ( = 0.000). Conclusions. It is likely that regular physical activity, and not normal weight, helps generate healthy physical fitness. Male subjects had a higher mean than women, reporting a better physical fitness and more frequent physical activity

    N coordination chemistry in diluted InGaAs nitride layers

    Get PDF
    GaAsN and InGaAsN semiconductor alloys with a small amount of nitrogen, so called dilute nitrides, constitute a novel compounds family with applications in telecom lasers and very efficient multijunction solar cells. The incorporation of N, which has a much larger electronegativity and smaller atomic size compared to As, induces a strong structural distortion in the InGaAs coordination chemistry, which will also affect the material electronic structure and band-gap. In particular, the nearest-neighbour bonding configuration of the N in InGaAsN has proven its influence on the band-gap. Our ARXPS results demonstrate that a higher growth temperature favour the formation of In-N bonds.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. - MINECO through TEC2011-28639-C02-02 and TEC2014-54260-C3-3-P - Wroclaw University of Technology statutory gran

    Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-β: A Protective Role of Melatonin

    Get PDF
    Alzheimer pathogenesis involves mitochondrial dysfunction, which is closely related to amyloid-β (Aβ) generation, abnormal tau phosphorylation, oxidative stress, and apoptosis. Alterations in membranal components, including cholesterol and fatty acids, their characteristics, disposition, and distribution along the membranes, have been studied as evidence of cell membrane alterations in AD brain. The majority of these studies have been focused on the cytoplasmic membrane; meanwhile the mitochondrial membranes have been less explored. In this work, we studied lipids and mitochondrial membranes in vivo, following intracerebral injection of fibrillar amyloid-β (Aβ). The purpose was to determine how Aβ may be responsible for beginning of a vicious cycle where oxidative stress and alterations in cholesterol, lipids and fatty acids, feed back on each other to cause mitochondrial dysfunction. We observed changes in mitochondrial membrane lipids, and fatty acids, following intracerebral injection of fibrillar Aβ in aged Wistar rats. Melatonin, a well-known antioxidant and neuroimmunomodulator indoleamine, reversed some of these alterations and protected mitochondrial membranes from obvious damage. Additionally, melatonin increased the levels of linolenic and n-3 eicosapentaenoic acid, in the same site where amyloid β was injected, favoring an endogenous anti-inflammatory pathway

    Towards airborne laser-induced breakdown spectroscopy: A signal recovery method for LIBS instruments subjected to vibrations

    Get PDF
    Sample or instrument vibrations can scatter laser impacts across the sample surface, which increases the uncertainty of laser-induced breakdown spectroscopy (LIBS) measurements. The common sources of noise associated to mechanical vibration are described and a method for isolating LIBS measurements from artifacts introduced by such fluctuations is presented. The approach circumvents the use of mechanical stabilizers by leveraging simple components common in LIBS systems. A camera was used to capture close-up images of the sample for each laser shot and the laser spot position in the sample surface was measured using common image processing techniques. By associating spectra with spatial coordinates in the sample surface, it was possible to reduce the relative standard deviation of the Cu(I) 427.51 nm signal in a patterned Cu/Al sample from 122.0% to 53.31%, similar to that measured for a pure Cu sample in the same vibration conditions. The spatial resolution of the method was found to depend on the laser spot diameter, the illuminance at the sample, the camera sensitivity and trigger insertion delay, and the speed of the laser beam sweeping the sample surface. The spatial resolution obtained with the setup used was ±0.6 mm at 15 m, i.e., 40 μm per meter of separation between the instrument and the sample with a vibration speed limit of 12 cm·s−1.The authors would like to express their gratitude to Carlos Malagon ´of Astroshop (Málaga, Spain) for donating the telescope used in the stand-off LIBS instrument. This work has been partially supported by the Programa Estatal para la Incorporacion ´ Estable de Doctores (IEDI-2017-00828) and by the I Plan Propio de Investigacion ´ de la Universidad de Malaga ´ (Spain). Funding for open access charge: Universidad de Malaga/CBUA

    The role of entrepreneurship and green innovation intention on sustainable development: moderating impact of inclusive leadership

    Get PDF
    Today, sustainable development (SD) is a worldwide requirement due to the numerous environmental challenges that require the attention of academics. Consequently, the current study explores the effect of entrepreneurial and green innovation aims on SD in Peru. In addition, the study examines the moderating effect of inclusive leadership on entrepreneurship, green innovation intention, and sustainable development in Peru. The study utilized primary data collection instruments such as questionnaires to collect information from the selected respondents. The paper also used smart-PLS to examine the data's dependability and the correlation between factors. In Peru, entrepreneurship and green innovation intentions were found to have a good relationship with sustainable development. In addition, the data demonstrated that inclusive leadership moderates the relationship between entrepreneurship, green innovation intention, and SD in Peru. The essay supports policy-making authorities in formulating SD-related policies by refocusing entrepreneurs' attention on green innovation.Wilson Cruz Mamani (Universidad Peruana Unión Juliaca), Germain Marcos Lagos Manrique (Universidad Nacional Federico Villarreal), Soraya del Pilar Carranco Madrid (Universidad Central del Ecuador), Edward Espinoza Herrera (Universidad Nacional Federico Villarreal), David Barrial Acosta (Universidad Nacional Micaela Bastidas de Apurímac), Rolando Remy Rivas-Diaz (Universidad Nacional de San Agustín), José Luis Arias-Gonzáles (University of British Columbia), Yuselino Maquera Maquera (Universidad Nacional del Altiplano Puno), Francisco Samael Saravia Ramos (Universidad Nacional De San Agustín)Includes bibliographical references
    corecore