48 research outputs found

    Back-calculating the incidence of infection of leprosy in a Bayesian framework.

    Get PDF
    BACKGROUND: The number of new leprosy cases reported annually is falling worldwide, but remains relatively high in some populations. Because of the long and variable periods between infection, onset of disease, and diagnosis, the recently detected cases are a reflection of infection many years earlier. Estimation of the numbers of sub-clinical and clinical infections would be useful for management of elimination programmes. Back-calculation is a methodology that could provide estimates of prevalence of undiagnosed infections, future diagnoses and the effectiveness of control. METHODS: A basic back-calculation model to investigate the infection dynamics of leprosy has been developed using Markov Chain Monte Carlo in a Bayesian context. The incidence of infection and the detection delay both vary with calendar time. Public data from Thailand are used to demonstrate the results that are obtained as the incidence of diagnosed cases falls. RESULTS: The results show that the underlying burden of infection and short-term future predictions of cases can be estimated with a simple model. The downward trend in new leprosy cases in Thailand is expected to continue. In 2015 the predicted total number of undiagnosed sub-clinical and clinical infections is 1,168 (846-1,546) of which 466 (381-563) are expected to be clinical infections. CONCLUSIONS: Bayesian back-calculation has great potential to provide estimates of numbers of individuals in health/infection states that are as yet unobserved. Predictions of future cases provides a quantitative measure of understanding for programme managers and evaluators. We will continue to develop the approach, and suggest that it might be useful for other NTD in which incidence of diagnosis is not an immediate measure of infection

    Insights from quantitative and mathematical modelling on the proposed 2030 goal for gambiense human African trypanosomiasis (gHAT)

    Get PDF
    Gambiense human African trypanosomiasis (gHAT) is a parasitic, vector-borne neglected tropical disease that has historically affected populations across West and Central Africa and can result in death if untreated. Following from the success of recent intervention programmes against gHAT, the World Health Organization (WHO) has defined a 2030 goal of global elimination of transmission (EOT). The key proposed indicator to measure achievement of the goal is to have zero reported cases. Results of previous mathematical modelling and quantitative analyses are brought together to explore both the implications of the proposed indicator and the feasibility of achieving the WHO goal. Whilst the indicator of zero case reporting is clear and measurable, it is an imperfect proxy for EOT and could arise either before or after EOT is achieved. Lagging reporting of infection and imperfect diagnostic specificity could result in case reporting after EOT, whereas the converse could be true due to underreporting, lack of coverage, and cryptic human and animal reservoirs. At the village-scale, the WHO recommendation of continuing active screening until there are three years of zero cases yields a high probability of local EOT, but extrapolating this result to larger spatial scales is complex. Predictive modelling of gHAT has consistently found that EOT by 2030 is unlikely across key endemic regions if current medical-only strategies are not bolstered by improved coverage, reduced time to detection and/or complementary vector control. Unfortunately, projected costs for strategies expected to meet EOT are high in the short term and strategies that are cost-effective in reducing burden are unlikely to result in EOT by 2030. Future modelling work should aim to provide predictions while taking into account uncertainties in stochastic dynamics and infection reservoirs, as well as assessment of multiple spatial scales, reactive strategies, and measurable proxies of EOT

    Quantifying epidemiological drivers of gambiense human African Trypanosomiasis across the Democratic Republic of Congo

    Get PDF
    Gambiense human African trypanosomiasis (gHAT) is a virulent disease declining in burden but still endemic in West and Central Africa. Although it is targeted for elimination of transmission by 2030, there remain numerous questions about the drivers of infection and how these vary geographically. In this study we focus on the Democratic Republic of Congo (DRC), which accounted for 84% of the global case burden in 2016, to explore changes in transmission across the country and elucidate factors which may have contributed to the persistence of disease or success of interventions in different regions. We present a Bayesian fitting methodology, applied to 168 endemic health zones ( 100,000 population size), which allows for calibration of a mechanistic gHAT model to case data (from the World Health Organization HAT Atlas) in an adaptive and automated framework. It was found that the model needed to capture improvements in passive detection to match observed trends in the data within former Bandundu and Bas Congo provinces indicating these regions have substantially reduced time to detection. Health zones in these provinces generally had longer burn-in periods during fitting due to additional model parameters. Posterior probability distributions were found for a range of fitted parameters in each health zone; these included the basic reproduction number estimates for pre-1998 (R0) which was inferred to be between 1 and 1.14, in line with previous gHAT estimates, with higher median values typically in health zones with more case reporting in the 2000s. Previously, it was not clear whether a fall in active case finding in the period contributed to the declining case numbers. The modelling here accounts for variable screening and suggests that underlying transmission has also reduced greatly { on average 96% in former Equateur, 93% in former Bas Congo and 89% in former Bandundu { Equateur and Bandundu having had the highest case burdens in 2000. This analysis also sets out a framework to enable future predictions for the country

    Forecasting the new case detection rate of leprosy in four states of Brazil: A comparison of modelling approaches.

    Get PDF
    BACKGROUND: Brazil has the second highest annual number of new leprosy cases. The aim of this study is to formally compare predictions of future new case detection rate (NCDR) trends and the annual probability of NCDR falling below 10/100,000 of four different modelling approaches in four states of Brazil: Rio Grande do Norte, Amazonas, Ceará, Tocantins. METHODS: A linear mixed model, a back-calculation approach, a deterministic compartmental model and an individual-based model were used. All models were fitted to leprosy data obtained from the Brazilian national database (SINAN). First, models were fitted to the data up to 2011, and predictions were made for NCDR for 2012-2014. Second, data up to 2014 were considered and forecasts of NCDR were generated for each year from 2015 to 2040. The resulting distributions of NCDR and the probability of NCDR being below 10/100,000 of the population for each year were then compared between approaches. RESULTS: Each model performed well in model fitting and the short-term forecasting of future NCDR. Long-term forecasting of NCDR and the probability of NCDR falling below 10/100,000 differed between models. All agree that the trend of NCDR will continue to decrease in all states until 2040. Reaching a NCDR of less than 10/100,000 by 2020 was only likely in Rio Grande do Norte. Prediction until 2040 showed that the target was also achieved in Amazonas, while in Ceará and Tocantins the NCDR most likely remain (far) above 10/100,000. CONCLUSIONS: All models agree that, while incidence is likely to decline, achieving a NCDR below 10/100,000 by 2020 is unlikely in some states. Long-term prediction showed a downward trend with more variation between models, but highlights the need for further control measures to reduce the incidence of new infections if leprosy is to be eliminated

    Identifying regions for enhanced control of gambiense sleeping sickness in the Democratic Republic of Congo

    Get PDF
    Gambiense human African trypanosomiasis (sleeping sickness, gHAT) is a disease targeted for elimination of transmission by 2030. While annual new cases are at a historical minimum, the likelihood of achieving the target is unknown. We utilised modelling to study the impacts of four strategies using currently available interventions, including active and passive screening and vector control, on disease burden and transmission across 168 endemic health zones in the Democratic Republic of the Congo. Median projected years of elimination of transmission show only 98 health zones are on track despite significant reduction in disease burden under medical-only strategies (64 health zones if > 90% certainty required). Blanket coverage with vector control is impractical, but is predicted to reach the target in all heath zones. Utilising projected disease burden under the uniform medical-only strategy, we provide a priority list of health zones for consideration for supplementary vector control alongside medical interventions

    Comparison of stochastic and deterministic models for gambiense sleeping sickness at different spatial scales : a health area analysis in the DRC

    Get PDF
    The intensification of intervention activities against the fatal vector-borne disease gambiense human African trypanosomiasis (gHAT, sleeping sickness) in the last two decades has led to a large decline in the number of annually reported cases. However, while we move closer to achieving the ambitious target of elimination of transmission (EoT) to humans, pockets of infection remain, and it becomes increasingly important to quantitatively assess if different regions are on track for elimination, and where intervention efforts should be focused. We present a previously developed stochastic mathematical model for gHAT in the Democratic Republic of Congo (DRC) and show that this same formulation is able to capture the dynamics of gHAT observed at the health area level (approximately 10,000 people). This analysis was the first time any stochastic gHAT model has been fitted directly to case data and allows us to better quantify the uncertainty in our results. The analysis focuses on utilising a particle filter Markov chain Monte Carlo (MCMC) methodology to fit the model to the data from 16 health areas of Mosango health zone in Kwilu province as a case study. The spatial heterogeneity in cases is reflected in modelling results, where we predict that under the current intervention strategies, the health area of Kinzamba II, which has approximately one third of the health zone’s cases, will have the latest expected year for EoT. We find that fitting the analogous deterministic version of the gHAT model using MCMC has substantially faster computation times than fitting the stochastic model using pMCMC, but produces virtually indistinguishable posterior parameterisation. This suggests that expanding health area fitting, to cover more of the DRC, should be done with deterministic fits for efficiency, but with stochastic projections used to capture both the parameter and stochastic variation in case reporting and elimination year estimations

    Update of transmission modelling and projections of gambiense human African trypanosomiasis in the Mandoul focus, Chad

    Get PDF
    In recent years, a programme of vector control, screening and treatment of gambiense human African trypanosomiasis (gHAT) infections led to a rapid decline in cases in the Mandoul focus of Chad. To represent the biology of transmission between humans and tsetse, we previously developed a mechanistic transmission model, fitted to data between 2000 and 2013 which suggested that transmission was interrupted by 2015. The present study outlines refinements to the model to: (1) Assess whether elimination of transmission has already been achieved despite low-level case reporting; (2) quantify the role of intensified interventions in transmission reduction; and (3) predict the trajectory of gHAT in Mandoul for the next decade under different strategies. Method Our previous gHAT transmission model for Mandoul was updated using human case data (2000–2019) and a series of model refinements. These include how diagnostic specificity is incorporated into the model and improvements to the fitting method (increased variance in observed case reporting and how underreporting and improvements to passive screening are captured). A side-by-side comparison of fitting to case data was performed between the models. Results We estimated that passive detection rates have increased due to improvements in diagnostic availability in fixed health facilities since 2015, by 2.1-fold for stage 1 detection, and 1.5-fold for stage 2. We find that whilst the diagnostic algorithm for active screening is estimated to be highly specific (95% credible interval (CI) 99.9–100%, Specificity = 99.9%), the high screening and low infection levels mean that some recently reported cases with no parasitological confirmation might be false positives. We also find that the focus-wide tsetse reduction estimated through model fitting (95% CI 96.1–99.6%, Reduction = 99.1%) is comparable to the reduction previously measured by the decline in tsetse catches from monitoring traps. In line with previous results, the model suggests that transmission was interrupted in 2015 due to intensified interventions. Conclusions We recommend that additional confirmatory testing is performed in Mandoul to ensure the endgame can be carefully monitored. More specific measurement of cases, would better inform when it is safe to stop active screening and vector control, provided there is a strong passive surveillance system in place

    Policy lessons from quantitative modeling of leprosy

    Get PDF
    Recent mathematical and statistical modeling of leprosy incidence data provides estimates of the current undiagnosed population and projections of diagnosed cases, as well as ongoing transmission. Furthermore, modeling studies have been used to evaluate the effectiveness of proposed intervention strategies, such as postleprosy exposure prophylaxis and novel diagnostics, relative to current approaches. Such modeling studies have revealed both a slow decline of new cases and a substantial pool of undiagnosed infections. These findings highlight the need for active case detection, particularly targeting leprosy foci, as well as for continued research into innovative accurate, rapid, and cost-effective diagnostics. As leprosy incidence continues to decline, targeted active case detection primarily in foci and connected areas will likely become increasingly important

    Health economic evaluation of strategies to eliminate gambiense human African trypanosomiasis in the Mandoul disease focus of Chad

    Get PDF
    Human African trypanosomiasis, caused by the gambiense subspecies of Trypanosoma brucei (gHAT), is a deadly parasitic disease transmitted by tsetse. Partners worldwide have stepped up efforts to eliminate the disease, and the Chadian government has focused on the previously high-prevalence setting of Mandoul. In this study, we evaluate the economic efficiency of the intensified strategy that was put in place in 2014 aimed at interrupting the transmission of gHAT, and we make recommendations on the best way forward based on both epidemiological projections and cost-effectiveness. In our analysis, we use a dynamic transmission model fit to epidemiological data from Mandoul to evaluate the cost-effectiveness of combinations of active screening, improved passive screening (defined as an expansion of the number of health posts capable of screening for gHAT), and vector control activities (the deployment of Tiny Targets to control the tsetse vector). For cost-effectiveness analyses, our primary outcome is disease burden, denominated in disability-adjusted life-years (DALYs), and costs, denominated in 2020 US.AlthoughactiveandpassivescreeninghaveenabledmorerapiddiagnosisandaccessibletreatmentinMandoul,theadditionofvectorcontrolprovidedgoodvalue−for−money(atlessthan. Although active and passive screening have enabled more rapid diagnosis and accessible treatment in Mandoul, the addition of vector control provided good value-for-money (at less than 750/DALY averted) which substantially increased the probability of reaching the 2030 elimination target for gHAT as set by the World Health Organization. Our transmission modelling and economic evaluation suggest that the gains that have been made could be maintained by passive screening. Our analysis speaks to comparative efficiency, and it does not take into account all possible considerations; for instance, any cessation of ongoing active screening should first consider that substantial surveillance activities will be critical to verify the elimination of transmission and to protect against the possible importation of infection from neighbouring endemic foci
    corecore