1,211 research outputs found

    High sensitivity phonon-mediated kinetic inductance detector with combined amplitude and phase read-out

    Get PDF
    The development of wide-area cryogenic light detectors with good energy resolution is one of the priorities of next generation bolometric experiments searching for rare interactions, as the simultaneous read-out of the light and heat signals enables background suppression through particle identification. Among the proposed technological approaches for the phonon sensor, the naturally-multiplexed Kinetic Inductance Detectors (KIDs) stand out for their excellent intrinsic energy resolution and reproducibility. To satisfy the large surface requirement (several cm2^2) KIDs are deposited on an insulating substrate that converts the impinging photons into phonons. A fraction of phonons is absorbed by the KID, producing a signal proportional to the energy of the original photons. The potential of this technique was proved by the CALDER project, that reached a baseline resolution of 154±\pm7 eV RMS by sampling a 2×\times2 cm2^2 Silicon substrate with 4 Aluminum KIDs. In this paper we present a prototype of Aluminum KID with improved geometry and quality factor. The design improvement, as well as the combined analysis of amplitude and phase signals, allowed to reach a baseline resolution of 82±\pm4 eV by sampling the same substrate with a single Aluminum KID

    Multi-mode TES bolometer optimization for the LSPE-SWIPE instrument

    Full text link
    In this paper we explore the possibility of using transition edge sensor (TES) detectors in multi-mode configuration in the focal plane of the Short Wavelength Instrument for the Polarization Explorer (SWIPE) of the balloon-borne polarimeter Large Scale Polarization Explorer (LSPE) for the Cosmic Microwave Background (CMB) polarization. This study is motivated by the fact that maximizing the sensitivity of TES bolometers, under the augmented background due to the multi-mode design, requires a non trivial choice of detector parameters. We evaluate the best parameter combination taking into account scanning strategy, noise constraints, saturation power and operating temperature of the cryostat during the flight.Comment: in Journal of Low Temperature Physics, 05 January 201

    Biased opinion dynamics: when the devil is in the details

    Get PDF
    We study opinion dynamics in multi-agent networks when a bias toward one of two pos-sible opinions exists, for example reflecting a status quo versus a superior alternative. Our aim is to investigate the combined effect of bias, network structure, and opinion dynamics on the convergence of the system of agents as a whole. Models of such evolving processes can easily become analytically intractable. In this paper, we consider a simple yet mathe-matically rich setting, in which all agents initially share an initial opinion representing the status quo. The system evolves in steps. In each step, one agent selected uniformly at ran -dom follows an underlying update rule to revise its opinion on the basis of those held by its neighbors, but with a probabilistic bias towards the superior alternative. We analyze con-vergence of the resulting process under well-known update rules. The framework we pro -pose is simple and modular, but at the same time complex enough to highlight a nonobvious interplay between topology and underlying update rule.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Geometric transport along circular orbits in stationary axisymmetric spacetimes

    Full text link
    Parallel transport along circular orbits in orthogonally transitive stationary axisymmetric spacetimes is described explicitly relative to Lie transport in terms of the electric and magnetic parts of the induced connection. The influence of both the gravitoelectromagnetic fields associated with the zero angular momentum observers and of the Frenet-Serret parameters of these orbits as a function of their angular velocity is seen on the behavior of parallel transport through its representation as a parameter-dependent Lorentz transformation between these two inner-product preserving transports which is generated by the induced connection. This extends the analysis of parallel transport in the equatorial plane of the Kerr spacetime to the entire spacetime outside the black hole horizon, and helps give an intuitive picture of how competing "central attraction forces" and centripetal accelerations contribute with gravitomagnetic effects to explain the behavior of the 4-acceleration of circular orbits in that spacetime.Comment: 33 pages ijmpd latex article with 24 eps figure

    Development of Lumped Element Kinetic Inductance Detectors for NIKA

    Get PDF
    Lumped-element kinetic inductance detectors(LEKIDs) have recently shown considerable promise as direct absorption mm-wavelength detectors for astronomical applications. One major research thrust within the N\'eel Iram Kids Array (NIKA) collaboration has been to investigate the suitability of these detectors for deployment at the 30-meter IRAM telescope located on Pico Veleta in Spain. Compared to microwave kinetic inductance detectors (MKID), using quarter wavelength resonators, the resonant circuit of a LEKID consists of a discrete inductance and capacitance coupled to a feedline. A high and constant current density distribution in the inductive part of these resonators makes them very sensitive. Due to only one metal layer on a silicon substrate, the fabrication is relatively easy. In order to optimize the LEKIDs for this application, we have recently probed a wide variety of individual resonator and array parameters through simulation and physical testing. This included determining the optimal feed-line coupling, pixel geometry, resonator distribution within an array (in order to minimize pixel cross-talk), and resonator frequency spacing. Based on these results, a 144-pixel Aluminum array was fabricated and tested in a dilution fridge with optical access, yielding an average optical NEP of ~2E-16 W/Hz^1/2 (best pixels showed NEP = 6E-17 W/Hz^1/2 under 4-8 pW loading per pixel). In October 2010 the second prototype of LEKIDs has been tested at the IRAM 30 m telescope. A new LEKID geometry for 2 polarizations will be presented. Also first optical measurements of a titanium nitride array will be discussed.Comment: 5 pages, 12 figures; ISSTT 2011 Worksho

    Characterization of the KID-Based Light Detectors of CALDER

    Full text link
    The aim of the Cryogenic wide-Area Light Detectors with Excellent Resolution (CALDER) project is the development of light detectors with active area of 5Ă—55\times5 cm2^2 and noise energy resolution smaller than 20 eV RMS, implementing phonon-mediated kinetic inductance detectors. The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double read-out of the light and the heat released by particles interacting in the bolometers. In this work, we present the characterization of the first light detectors developed by CALDER. We describe the analysis tools to evaluate the resonator parameters (resonant frequency and quality factors) taking into account simultaneously all the resonance distortions introduced by the read-out chain (as the feed-line impedance and its mismatch) and by the power stored in the resonator itself. We detail the method for the selection of the optimal point for the detector operation (maximizing the signal-to-noise ratio). Finally, we present the response of the detector to optical pulses in the energy range of 0-30 keV

    New application of superconductors: high sensitivity cryogenic light detectors

    Get PDF
    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs), that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2x2 cm2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement

    New radio observations of anomalous microwave emission in the HII region RCW175

    Get PDF
    We have observed the HII region RCW175 with the 64m Parkes telescope at 8.4GHz and 13.5GHz in total intensity, and at 21.5GHz in both total intensity and polarization. High angular resolution, high sensitivity, and polarization capability enable us to perform a detailed study of the different constituents of the HII region. For the first time, we resolve three distinct regions at microwave frequencies, two of which are part of the same annular diffuse structure. Our observations enable us to confirm the presence of anomalous microwave emission (AME) from RCW175. Fitting the integrated flux density across the entire region with the currently available spinning dust models, using physically motivated assumptions, indicates the presence of at least two spinning dust components: a warm component with a relatively large hydrogen number density n_H=26.3/cm^3 and a cold component with a hydrogen number density of n_H=150/cm^3. The present study is an example highlighting the potential of using high angular-resolution microwave data to break model parameter degeneracies. Thanks to our spectral coverage and angular resolution, we have been able to derive one of the first AME maps, at 13.5GHz, showing clear evidence that the bulk of the AME arises in particular from one of the source components, with some additional contribution from the diffuse structure. A cross-correlation analysis with thermal dust emission has shown a high degree of correlation with one of the regions within RCW175. In the center of RCW175, we find an average polarized emission at 21.5GHz of 2.2\pm0.2(rand.)\pm0.3(sys.)% of the total emission, where we have included both systematic and statistical uncertainties at 68% CL. This polarized emission could be due to sub-dominant synchrotron emission from the region and is thus consistent with very faint or non-polarized emission associated with AME.Comment: Accepted for publication in the Astrophysical Journa
    • …
    corecore