22 research outputs found

    Novel fungal genera and species associated with the sooty blotch and flyspeck complex on apple in China and the USA

    Get PDF
    Fungi in the sooty blotch and flyspeck (SBFS) complex cause blemishes on apple and pear fruit that result in economic losses for growers. The SBFS fungi colonise the epicuticular wax layer of pomaceous fruit but do not invade the cuticle. Fungi causing fuliginous and punctate mycelial types on apple are particularly difficult to identify based on morphological criteria because many species in the SBFS complex share the same mycelial phenotypes. We compared the morphology and nuclear ribosomal DNA phylogeny (ITS, LSU) of 11 fungal strains isolated from SBFS blemishes on apple obtained from two provinces in China and five states in the USA. Parsimony analysis, supported by cultural characteristics and morphology in vitro, provided support to delimit the isolates into three novel genera, representing five new species. Phaeothecoidiella, with two species, P. missouriensis and P. illinoisensis, is introduced as a new genus with pigmented endoconidia in the Dothideomycetes. Houjia (Capnodiales) is introduced for H. pomigena and H. yanglingensis. Although morphologically similar to Stanjehughesia (Chaetosphaeriaceae), Houjia is distinct in having solitary conidiogenous cells. Sporidesmajora (Capnodiales), based on S. pennsylvaniensis, is distinguished from Sporidesmium (Sordariomycetes) in having long, multiseptate conidiophores that frequently have a subconical, darkly pigmented apical cell, and very long, multi-euseptate conidia

    Dissoconiaceae associated with sooty blotch and flyspeck on fruits in China and the United States

    Get PDF
    Zasmidium angulare, a novel species of Mycosphaerellaceae, and several novel taxa that reside in Dissoconiaceae, were identified from a collection of apples and Cucurbita maxima (cv. Blue Hubbard) from China and the USA that exhibited sooty blotch and flyspeck (SBFS) signs on their host substrata. Morphology on fruit surfaces and in culture, and phylogenetic analyses of the nuclear ribosomal DNAs 28S and internal transcribed spacer regions, as well as partial translation elongation factor 1-alpha gene sequences in some cases, were used to delineate seven previously unidentified species and three known species. Pseudoveronaea was established as a new genus of Dissoconiaceae, represented by two species, P. ellipsoidea and P. obclavata. Although Pseudoveronaea was morphologically similar to Veronaea, these fungi clustered with Dissoconiaceae (Capnodiales) rather than Chaetothyriales (Herpotrichiellaceae). Ramichloridium mali comb. nov., and three novel species, R. cucurbitae, R. luteum and R. punctatum were closely related with R. apiculatum, which together formed a distinct subclade in Dissoconiaceae. Species of Dissoconium s.lat. clustered in two well-supported clades supported by distinct morphological and cultural features. Subsequently Uwebraunia, a former synonym of Dissoconium, was resurrected for the one clade, with new combinations proposed for U. australiensis, U. commune, U. dekkeri and U. musae. Furthermore, we also reported that D. aciculare, Dissoconium sp., U. commune and U. dekkeri were associated with SBFS on apples

    Fungal Planet description sheets: 1436–1477

    Get PDF
    Novel species of fungi described in this study include those from various countries as follows: Argentina, Colletotrichum araujiae on leaves, stems and fruits of Araujia hortorum. Australia, Agaricus pateritonsus on soil, Curvularia fraserae on dying leaf of Bothriochloa insculpta, Curvularia millisiae from yellowing leaf tips of Cyperus aromaticus, Marasmius brunneolorobustus on well-rotted wood, Nigrospora cooperae from necrotic leaf of Heteropogon contortus, Penicillium tealii from the body of a dead spider, Pseudocercospora robertsiorum from leaf spots of Senna tora, Talaromyces atkinsoniae from gills of Marasmius crinis-equi and Zasmidium pearceae from leaf spots of Smilax glyciphylla. Brazil, Preussia bezerrensis from air. Chile, Paraconiothyrium kelleni from the rhizosphere of Fragaria chiloensis subsp. chiloensis f. chiloensis. Finland, Inocybe udicola on soil in mixed forest with Betula pendula, Populus tremula, Picea abies and Alnus incana. France, Myrmecridium normannianum on dead culm of unidentified Poaceae. Germany, Vexillomyces fraxinicola from symptomless stem wood of Fraxinus excelsior. India, Diaporthe limoniae on infected fruit of Limonia acidissima, Didymella naikii on leaves of Cajanus cajan, and Fulvifomes mangroviensis on basal trunk of Aegiceras corniculatum. Indonesia, Penicillium ezekielii from Zea mays kernels. Namibia, Neocamarosporium calicoremae and Neocladosporium calicoremae on stems of Calicorema capitata, and Pleiochaeta adenolobi on symptomatic leaves of Adenolobus pechuelii. Netherlands, Chalara pteridii on stems of Pteridium aquilinum, Neomackenziella juncicola (incl. Neomackenziella gen. nov.) and Sporidesmiella junci from dead culms of Juncus effusus. Pakistan, Inocybe longistipitata on soil in a Quercus forest. Poland, Phytophthora viadrina from rhizosphere soil of Quercus robur, and Septoria krystynae on leaf spots of Viscum album. Portugal (Azores), Acrogenospora stellata on dead wood or bark. South Africa, Phyllactinia greyiae on leaves of Greyia sutherlandii and Punctelia anae on bark of Vachellia karroo. Spain, Anteaglonium lusitanicum on decaying wood of Prunus lusitanica subsp. lusitanica, Hawksworthiomyces riparius from fluvial sediments, Lophiostoma carabassense endophytic in roots of Limbarda crithmoides, and Tuber mohedanoi from calcareus soils. Spain (Canary Islands), Mycena laurisilvae on stumps and woody debris. Sweden, Elaphomyces geminus from soil under Quercus robur. Thailand, Lactifluus chiangraiensis on soil under Pinus merkusii, Lactifluus nakhonphanomensis and Xerocomus sisongkhramensis on soil under Dipterocarpus trees. Ukraine, Valsonectria robiniae on dead twigs of Robinia hispida. USA, Spiralomyces americanus (incl. Spiralomyces gen. nov.) from office air. Morphological and culture characteristics are supported by DNA barcodes

    Novel fungal genera and species associated with the sooty blotch and flyspeck complex on apple in China and the USA

    No full text
    Fungi in the sooty blotch and flyspeck (SBFS) complex cause blemishes on apple and pear fruit that result in economic losses for growers. The SBFS fungi colonise the epicuticular wax layer of pomaceous fruit but do not invade the cuticle. Fungi causing fuliginous and punctate mycelial types on apple are particularly difficult to identify based on morphological criteria because many species in the SBFS complex share the same mycelial phenotypes. We compared the morphology and nuclear ribosomal DNA phylogeny (ITS, LSU) of 11 fungal strains isolated from SBFS blemishes on apple obtained from two provinces in China and five states in the USA. Parsimony analysis, supported by cultural characteristics and morphology in vitro, provided support to delimit the isolates into three novel genera, representing five new species. Phaeothecoidiella, with two species, P. missouriensis and P. illinoisensis, is introduced as a new genus with pigmented endoconidia in the Dothideomycetes. Houjia (Capnodiales) is introduced for H. pomigena and H. yanglingensis. Although morphologically similar to Stanjehughesia (Chaetosphaeriaceae), Houjia is distinct in having solitary conidiogenous cells. Sporidesmajora (Capnodiales), based on S. pennsylvaniensis, is distinguished from Sporidesmium (Sordariomycetes) in having long, multiseptate conidiophores that frequently have a subconical, darkly pigmented apical cell, and very long, multi-euseptate conidia

    Novel fungal genera and species associated with the sooty blotch and flyspeck complex on apple in China and the USA

    No full text
    Fungi in the sooty blotch and flyspeck (SBFS) complex cause blemishes on apple and pear fruit that result in economic losses for growers. The SBFS fungi colonise the epicuticular wax layer of pomaceous fruit but do not invade the cuticle. Fungi causing fuliginous and punctate mycelial types on apple are particularly difficult to identify based on morphological criteria because many species in the SBFS complex share the same mycelial phenotypes. We compared the morphology and nuclear ribosomal DNA phylogeny (ITS, LSU) of 11 fungal strains isolated from SBFS blemishes on apple obtained from two provinces in China and five states in the USA. Parsimony analysis, supported by cultural characteristics and morphology in vitro, provided support to delimit the isolates into three novel genera, representing five new species. Phaeothecoidiella, with two species, P. missouriensis and P. illinoisensis, is introduced as a new genus with pigmented endoconidia in the Dothideomycetes. Houjia (Capnodiales) is introduced for H. pomigena and H. yanglingensis. Although morphologically similar to Stanjehughesia (Chaetosphaeriaceae), Houjia is distinct in having solitary conidiogenous cells. Sporidesmajora (Capnodiales), based on S. pennsylvaniensis, is distinguished from Sporidesmium (Sordariomycetes) in having long, multiseptate conidiophores that frequently have a subconical, darkly pigmented apical cell, and very long, multi-euseptate conidia

    Take-all or nothing

    Get PDF
    Take-all disease of Poaceae is caused by Gaeumannomyces graminis (Magnaporthaceae). Four varieties are recognised in G. graminis based on ascospore size, hyphopodial morphology and host preference. The aim of the present study was to clarify boundaries among species and varieties in Gaeumannomyces by combining morphology and multi-locus phylogenetic analyses based on partial gene sequences of ITS, LSU, tef1 and rpb1. Two new genera, Falciphoriella and Gaeumannomycella were subsequently introduced in Magnaporthaceae. The resulting phylogeny revealed several cryptic species previously overlooked within Gaeumannomyces. Isolates of Gaeumannomyces were distributed in four main clades, from which 19 species could be delimited, 12 of which were new to science. Our results show that the former varieties Gaeumannomyces graminis var. avenae and Gaeumannomyces graminis var. tritici represent species phylogenetically distinct from G. graminis, for which the new combinations G. avenae and G. tritici are introduced. Based on molecular data, morphology and host preferences, Gaeumannomyces graminis var. maydis is proposed as a synonym of G. radicicola. Furthermore, an epitype for Gaeumannomyces graminis var. avenae was designated to help stabilise the application of that name

    Scleroramularia gen. nov. associated with sooty blotch and flyspeck of apple and pawpaw from the Northern Hemisphere

    No full text
    Scleroramularia is proposed as a new hyphomycetous fungal genus associated with sooty blotch and flyspeck (SBFS) blemishes of apple and pawpaw fruit in the Northern Hemisphere. Morphologically the genus closely resembles Ramularia (Mycosphaerellaceae), based on its chains of hyaline conidia, with thickened, darkened, somewhat refractive conidiogenous loci. Scleroramularia is distinguished by forming black sclerotial bodies in culture, and having conidial chains that do not quickly disarticulate as observed in Ramularia. Based on the nuclear ribosomal DNA phylogeny (LSU), Scleroramularia represents an undescribed order in the Dothideomycetes, clustering between the Pleosporales and the Botryosphaeriales. Further analysis of morphology in combination with DNA phylogeny of the nuclear ribosomal ITS region and partial translation elongation factor 1-alpha (TEF) gene sequences delimited five species. These include S. asiminae on Asimina triloba (pawpaw fruit) in the U.S.A., and four other species occurring on apple fruit, namely S. abundans (on a local cultivar in Ardesen, Rize, Turkey), S. shaanxiensis (on ‘Fuji’ in China), S. pomigena (on ‘Golden Delicious’ in the U.S.A.), and S. henaniensis (on ‘Fuji’ in China, and ‘Golden Delicious’ and ‘Gold Rush’ in the U.S.A.). Morphologically these taxa can be distinguished based on a combination of culture characteristics and conidial morphology in vitro, which is reflected in a key to the species treate

    Dissoconiaceae associated with sooty blotch and flyspeck on fruits in China and the United States

    No full text
    Zasmidium angulare, a novel species of Mycosphaerellaceae, and several novel taxa that reside in Dissoconiaceae, were identified from a collection of apples and Cucurbita maxima (cv. Blue Hubbard) from China and the USA that exhibited sooty blotch and flyspeck (SBFS) signs on their host substrata. Morphology on fruit surfaces and in culture, and phylogenetic analyses of the nuclear ribosomal DNAs 28S and internal transcribed spacer regions, as well as partial translation elongation factor 1-alpha gene sequences in some cases, were used to delineate seven previously unidentified species and three known species. Pseudoveronaea was established as a new genus of Dissoconiaceae, represented by two species, P. ellipsoidea and P. obclavata. Although Pseudoveronaea was morphologically similar to Veronaea, these fungi clustered with Dissoconiaceae (Capnodiales) rather than Chaetothyriales (Herpotrichiellaceae). Ramichloridium mali comb. nov., and three novel species, R. cucurbitae, R. luteum and R. punctatum were closely related with R. apiculatum, which together formed a distinct subclade in Dissoconiaceae. Species of Dissoconium s.lat. clustered in two well-supported clades supported by distinct morphological and cultural features. Subsequently Uwebraunia, a former synonym of Dissoconium, was resurrected for the one clade, with new combinations proposed for U. australiensis, U. commune, U. dekkeri and U. musae. Furthermore, we also reported that D. aciculare, Dissoconium sp., U. commune and U. dekkeri were associated with SBFS on apples

    Dissoconiaceae

    No full text

    Whole system valuation of arable, agroforestry and tree-only systems at three case study sites in Europe

    No full text
    There is an increasing demand to study the long-term effects of land use from both local farm and wider societal and environmental perspectives. This study applied an approach to evaluate both the financial profitability of arable, agroforestry, and tree-only systems and the wider societal benefits over a period of 30-60 years. The biophysical inputs and yields from the three systems were modelled for three case study sites in the United Kingdom, Spain, and Switzerland, using a tree and crop simulation model called Yield-SAFE. A bio-economic model called Farm-SAFE was then used to compare the financial (EAVF) and economic (or societal) equivalent annual values (EAVE) by including monetary values for five environmental externalities: carbon dioxide emissions, carbon sequestration, soil erosion by water, and nitrogen and phosphorus balances. Across the three case studies, arable farming generated higher farm incomes than the agroforestry or tree-only systems, but the arable systems also created the greatest environmental costs. By comparison the agroforestry and tree-only systems generated lower CO2 emissions and sequestered more carbon. Applying monetary values to the environmental externalities meant that the EAVE of the agroforestry and tree-only systems were greater or similar to that for the arable system in the UK case study. In Spain, the slow predicted growth of the trees meant that, even after including the environmental externalities, the arable system created greater societal benefit than the agroforestry and tree-only systems. In Switzerland, including the environmental externalities increased the attraction of the tree-only system, but the high subsidies for arable and agroforestry systems meant that the EAVE for the agroforestry and arable systems were the most attractive from a farmer’s perspective. A breakeven analysis was used to determine the environmental externality values at which the agroforestry and tree-only systems produced the same societal return as the arable system in each case study. In the UK, a carbon price of ₠16 (t CO2)-1 allowed the EAVE of the agroforestry system to attain parity with the arable EAVE. In both the UK and Spain, an environmental nitrogen cost of ₠3-6 (kg N)-1 was sufficient for the EAVE of the agroforestry and tree-only systems to match those of arable farming. Because trees on farms provide ‘‘economies of multifunction’’ for environmental benefits, the breakeven values will be less if environmental benefits are considered together as packages. The described approach provides a method for governments and others to examine the cost effectiveness of new agri-environment measures.We acknowledge support of the European Commission through the AGFORWARD FP7 research project (AGroFORestry that Will Advance Rural Development; Contract No. 613520 )
    corecore