221 research outputs found

    Control of pre-replicative complex during the division cycle in Chlamydomonas reinhardtii

    Full text link
    DNA replication is fundamental to all living organisms. In yeast and animals, it is triggered by an assembly of pre-replicative complex including ORC, CDC6 and MCMs. Cyclin Dependent Kinase (CDK) regulates both assembly and firing of the pre-replicative complex. We tested temperature-sensitive mutants blocking Chlamydomonas DNA replication. The mutants were partially or completely defective in DNA replication and did not produce mitotic spindles. After a long G1, wild type Chlamydomonas cells enter a division phase when it undergoes multiple rapid synchronous divisions (‘multiple fission’). Using tagged transgenic strains, we found that MCM4 and MCM6 were localized to the nucleus throughout the entire multiple fission division cycle, except for transient cytoplasmic localization during each mitosis. Chlamydomonas CDC6 was transiently localized in nucleus in early division cycles. CDC6 protein levels were very low, probably due to proteasomal degradation. CDC6 levels were severely reduced by inactivation of CDKA1 (CDK1 ortholog) but not the plant-specific CDKB1. Proteasome inhibition did not detectably increase CDC6 levels in the cdka1 mutant, suggesting that CDKA1 might upregulate CDC6 at the transcriptional level. All of the DNA replication proteins tested were essentially undetectable until late G1. They accumulated specifically during multiple fission and then were degraded as cells completed their terminal divisions. We speculate that loading of origins with the MCM helicase may not occur until the end of the long G1, unlike in the budding yeast system. We also developed a simple assay for salt-resistant chromatin binding of MCM4, and found that tight MCM4 loading was dependent on ORC1, CDC6 and MCM6, but not on RNR1 or CDKB1. These results provide a microbial framework for approaching replication control in the plant kingdom

    Numerical analysis of high-power X-band sources, at low magnetic confinement, for use in a multi-source array

    Get PDF
    High-power microwave sources are typically relativistic in nature, employing multi-kilo-ampere electron beams that require significant magnetic confinement for efficient operation. As the desired output power increases so does the complexity, and overall energy requirements, of the source. It can therefore be advantageous to consider the use of several, moderate-power, sources operating as a phased array; for an array of N sources the far-field peak intensity scales as N2, and the peak-of-field may be steered electronically by varying the relative phases of the different output signals. In this paper we present the numerical analysis of a short-pulse (∼1ns) X-band backward-wave oscillator, driven by a 210keV, 1.4kA electron beam, suitable for use as the radiative element in such an array. Investigation of the required magnetic confinement showed two peaks in performance, with the highest efficiency, of 43%, predicted at the low magnetic confinement peak at 0.3T, corresponding to 125MW peak output power. The magnitude, and timing, of the peak in the output pulse were functions of the rise-time of the electron beam energy, with longer rise-times resulting in delayed peak-of-field and lower peak output power. When operating in an array, to maintain effective output in the region of N2, it was determined that the beam rise-times, across all sources, should be ≤150ps with the adjustment of the relative timing between output’s being ±30ps

    Spatial transcriptomic characterization of COVID-19 pneumonitis identifies immune circuits related to tissue injury

    Get PDF
    Severe lung damage resulting from COVID-19 involves complex interactions between diverse populations of immune and stromal cells. In this study, we used a spatial transcriptomics approach to delineate the cells, pathways, and genes present across the spectrum of histopathological damage in COVID-19–affected lung tissue. We applied correlation network–based approaches to deconvolve gene expression data from 46 areas of interest covering more than 62,000 cells within well-preserved lung samples from 3 patients. Despite substantial interpatient heterogeneity, we discovered evidence for a common immune-cell signaling circuit in areas of severe tissue that involves crosstalk between cytotoxic lymphocytes and pro-inflammatory macrophages. Expression of IFNG by cytotoxic lymphocytes was associated with induction of chemokines, including CXCL9, CXCL10, and CXCL11, which are known to promote the recruitment of CXCR3+ immune cells. The TNF superfamily members BAFF (TNFSF13B) and TRAIL (TNFSF10) were consistently upregulated in the areas with severe tissue damage. We used published spatial and single-cell SARS-CoV-2 data sets to validate our findings in the lung tissue from additional cohorts of patients with COVID-19. The resulting model of severe COVID-19 immune-mediated tissue pathology may inform future therapeutic strategies

    Hermansky-Pudlak syndrome type 1 causes impaired anti-microbial immunity and inflammation due to dysregulated immunometabolism

    Get PDF
    Hermansky-Pudlak syndrome (HPS) types 1 and 4 are caused by defective vesicle trafficking. The mechanism for Crohn's disease-like inflammation, lung fibrosis, and macrophage lipid accumulation in these patients remains enigmatic. The aim of this study is to understand the cellular basis of inflammation in HPS-1. We performed mass cytometry, proteomic and transcriptomic analyses to investigate peripheral blood cells and serum of HPS-1 patients. Using spatial transcriptomics, granuloma-associated signatures in the tissue of an HPS-1 patient with granulomatous colitis were dissected. In vitro studies were conducted to investigate anti-microbial responses of HPS-1 patient macrophages and cell lines. Monocytes of HPS-1 patients exhibit an inflammatory phenotype associated with dysregulated TNF, IL-1α, OSM in serum, and monocyte-derived macrophages. Inflammatory macrophages accumulate in the intestine and granuloma-associated macrophages in HPS-1 show transcriptional signatures suggestive of a lipid storage and metabolic defect. We show that HPS1 deficiency leads to an altered metabolic program and Rab32-dependent amplified mTOR signaling, facilitated by the accumulation of mTOR on lysosomes. This pathogenic mechanism translates into aberrant bacterial clearance, which can be rescued with mTORC1 inhibition. Rab32-mediated mTOR signaling acts as an immuno-metabolic checkpoint, adding to the evidence that defective bioenergetics can drive hampered anti-microbial activity and contribute to inflammation

    Sub-THz and THz Cherenkov radiation source with two-dimensional periodic surface lattice and multistage depressed collector

    Get PDF
    We present the theory, concept and design of an efficient, megawatt coherent Cherenkov radiation source based on a two-dimensional periodic surface lattice (2D-PSL) cavity combined with a novel energy recovery system for the generation of highly efficient (> 50%) single-frequency radiation. We demonstrate the scalability of the transverse dimension of the 2D-PSL cavity of the Cherenkov source and thus the potential for efficient, continuous-wave, high-power (> 1 MW) operation; fundamental to the eventual realization of clean, fusion energy. These new sources, with the capacity to operate in the 0.1-10THz range, hold strong promise to address the long-standing “Terahertz gap”. By combining a Cherenkov oscillator driven by a non-gyrating beam with an innovative four-stage depressed collector energy recovery system, the overall device efficiency can be increased to be competitive with gyrotrons in the requirements for heating and current drive in fusion plasma. In these Cherenkov devices, the frequency independence of the magnetic guide field enables advantageous frequency scaling without deployment constraints, making them especially attractive for high-impact applications in fusion science, turbulence diagnostics, non-destructive testing and biochemical spectroscopy. The novel energy recovery techniques presented in this paper have broad applicability to many electron-beam driven devices, bringing revolutionary potential to future THz source technologies

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Evaluation of the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in infantile epilepsy (Gene-STEPS): an international, multicentre, pilot cohort study

    Get PDF
    BACKGROUND: Most neonatal and infantile-onset epilepsies have presumed genetic aetiologies, and early genetic diagnoses have the potential to inform clinical management and improve outcomes. We therefore aimed to determine the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in this population. METHODS: We conducted an international, multicentre, cohort study (Gene-STEPS), which is a pilot study of the International Precision Child Health Partnership (IPCHiP). IPCHiP is a consortium of four paediatric centres with tertiary-level subspecialty services in Australia, Canada, the UK, and the USA. We recruited infants with new-onset epilepsy or complex febrile seizures from IPCHiP centres, who were younger than 12 months at seizure onset. We excluded infants with simple febrile seizures, acute provoked seizures, known acquired cause, or known genetic cause. Blood samples were collected from probands and available biological parents. Clinical data were collected from medical records, treating clinicians, and parents. Trio genome sequencing was done when both parents were available, and duo or singleton genome sequencing was done when one or neither parent was available. Site-specific protocols were used for DNA extraction and library preparation. Rapid genome sequencing and analysis was done at clinically accredited laboratories, and results were returned to families. We analysed summary statistics for cohort demographic and clinical characteristics and the timing, diagnostic yield, and clinical impact of rapid genome sequencing. FINDINGS: Between Sept 1, 2021, and Aug 31, 2022, we enrolled 100 infants with new-onset epilepsy, of whom 41 (41%) were girls and 59 (59%) were boys. Median age of seizure onset was 128 days (IQR 46-192). For 43 (43% [binomial distribution 95% CI 33-53]) of 100 infants, we identified genetic diagnoses, with a median time from seizure onset to rapid genome sequencing result of 37 days (IQR 25-59). Genetic diagnosis was associated with neonatal seizure onset versus infantile seizure onset (14 [74%] of 19 vs 29 [36%] of 81; p=0·0027), referral setting (12 [71%] of 17 for intensive care, 19 [44%] of 43 non-intensive care inpatient, and 12 [28%] of 40 outpatient; p=0·0178), and epilepsy syndrome (13 [87%] of 15 for self-limited epilepsies, 18 [35%] of 51 for developmental and epileptic encephalopathies, 12 [35%] of 34 for other syndromes; p=0·001). Rapid genome sequencing revealed genetic heterogeneity, with 34 unique genes or genomic regions implicated. Genetic diagnoses had immediate clinical utility, informing treatment (24 [56%] of 43), additional evaluation (28 [65%]), prognosis (37 [86%]), and recurrence risk counselling (all cases). INTERPRETATION: Our findings support the feasibility of implementation of rapid genome sequencing in the clinical care of infants with new-onset epilepsy. Longitudinal follow-up is needed to further assess the role of rapid genetic diagnosis in improving clinical, quality-of-life, and economic outcomes. FUNDING: American Academy of Pediatrics, Boston Children's Hospital Children's Rare Disease Cohorts Initiative, Canadian Institutes of Health Research, Epilepsy Canada, Feiga Bresver Academic Foundation, Great Ormond Street Hospital Charity, Medical Research Council, Murdoch Children's Research Institute, National Institute of Child Health and Human Development, National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, One8 Foundation, Ontario Brain Institute, Robinson Family Initiative for Transformational Research, The Royal Children's Hospital Foundation, University of Toronto McLaughlin Centre

    Litigation and the Timing of Settlement: Evidence from Commercial Disputes

    Full text link
    Although an overwhelming proportion of all legal disputes end in settlement, the determinants of the timing of settlement remain empirically underexplored. We draw on a novel dataset on the duration of commercial disputes in Slovenia to study how the timing of settlement is shaped by the stages and features of the litigation process. Using competing risk regression analysis, we find that events such as court-annexed mediation and the first court session, which enable the disputing parties to refine their respective expectations about the case outcome, in general reduce case duration to settlement. The magnitude of the respective effects, however, varies with time. Completion of subsequent court sessions, in contrast, does not affect the time to settlement. Judicial workload affects the timing of settlement indirectly, via the effect on the timing of the first court session. We also examine the effect of other case and party characteristics

    Regional variations in quality of survival among men with prostate cancer across the United Kingdom

    Get PDF
    Purpose: Prostate cancer incidence, treatment and survival rates vary throughout the United Kingdom (UK) but little is known about regional differences in quality of survival. Objective: To investigate variations in patient-reported outcomes between UK countries and English Cancer Alliances. Design, setting and participants: A cross-sectional postal survey of prostate cancer survivors diagnosed 18-42 months previously. Outcome measurements and statistical analysis: Urinary, bowel, sexual problems and vitality were patient reported using the EPIC-26 questionnaire. General health was also self-assessed. Regional variations were identified using multivariable log-linear regression. Results and limitations: 35,823 men responded; 60.8% of those invited. Self-assessed health was significantly lower than the UK average in Wales and Scotland. Respondents reported more urinary incontinence in Scotland, more urinary irritation/obstruction in Scotland and Northern Ireland (NI), poorer bowel function in Scotland and NI, worse sexual function in Scotland, and reduced vitality/hormonal function in Scotland, Wales and NI. Self-assessed health was poorer than the English average in South Yorkshire and North-East & Cumbria, with more urinary incontinence in North-East & Cumbria and Peninsula, greater sexual problems in West Midlands and poorer vitality in North-East & Cumbria and West Midlands. Limitations include difficulty identifying clinically significant differences and limited information on pre-treatment conditions. Conclusions: Despite adjustment for treatment, clinical and socio-demographic factors, quality of survival among prostate cancer survivors varied by area of residence. Adoption of best practice from areas performing well could support enhanced survival quality in poorer performing areas, particularly with regards bowel problems and vitality, where clinically relevant differences were reported. Patient summary: We conducted a UK-wide survey of patient’s quality of life after treatment for prostate cancer. Outcomes were found to vary depending upon where patients live. Different service providers need to ensure that all prostate cancer patients receive the same follow up care

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature
    corecore