1,469 research outputs found
A Short-Wavelength Photoreceptor Class in a Deep-Sea Shrimp
In the world of midwater, mesopelagic animals, downwelling sunlight is filtered by the overlying water to a limited waveband centered near 475 nm. Consequently, the visual pigments of most of these species absorb maximally between 450 and 500 nm. The only exceptions occur in some fishes, which have additional visual pigments absorbing at long wavelengths (550-580 nm) matched to their red bioluminescence. We now find that the mesopelagic decapod shrimp Systellaspis debilis has two visual pigments. One of these absorbs maximally in the expected range (λmax = 498 nm). but the other is maximally sensitive at very short wavelengths, approaching the near-ultraviolet (λmax = 410 nm). The discovery of a visual receptor class absorbing at such short wavelengths in a mesopelagic animal suggests that visual systems in the deep sea may be far more diverse, and potentially more complex, than previously suspected
Light and Vision in the Deep-Sea Benthos: II. Vision in Deep-Sea Crustaceans
Using new collecting techniques with the Johnson-Sea-Link submersible, eight species of deep-sea benthic crustaceans were collected with intact visual systems. Their spectral sensitivities and temporal resolutions were determined shipboard using electroretinography. Useable spectral sensitivity data were obtained from seven species, and in the dark-adapted eyes, the spectral sensitivity peaks were in the blue region of the visible spectrum, ranging from 470 to 497 nm. Under blue chromatic adaptation, a secondary sensitivity peak in the UV portion of the spectrum appeared for two species of anomuran crabs:Eumunida picta (λmax 363 nm) and Gastroptychus spinifer (λmax 383 nm). Wavelength-specific differences in response waveforms under blue chromatic adaptation in these two species suggest that two populations of photoreceptor cells are present. Temporal resolution was determined in all eight species using the maximum critical flicker frequency (CFFmax). The CFFmax for the isopodBooralana tricarinata of 4 Hz proved to be the lowest ever measured using this technique, and suggests that this species is not able to track even slow-moving prey. Both the putative dual visual pigment system in the crabs and the extremely slow eye of the isopod may be adaptations for seeing bioluminescence in the benthic environment
Recommended from our members
Ostracode Mg/Ca paleothermometry in the North Atlantic and Arctic oceans: Evaluation of a carbonate ion effect
The reconstruction of deep-sea bottom water temperature (BWT) is important to assess the ocean's response to and role in orbital- and millennial-scale climate change. Deep-sea paleothermometry employs magnesium to calcium (Mg/Ca) ratios in calcitic benthic microfaunas (foraminifera, ostracodes) as a primary proxy method. Mg/Ca paleothermometry may, however, be complicated by bottom water carbonate ion chemistry, which might affect Mg/Ca ratios in shells. To address temperature and carbonate ion influence on Mg/Ca ratios, we studied Mg/Ca ratios in the benthic ostracode genus Krithe in the North Atlantic and Arctic oceans using a 686-specimen core top collection, including 412 previously unpublished analyses. Mg/Ca ratios are positively correlated to temperature in multiple species from the North Atlantic [BWT = (0.885 × Mg/Ca) − 5.69, r2 = 0.73] and for K. glacialis in the Arctic Ocean and Nordic Seas [BWT = (0.439 × Mg/Ca) − 5.14, r2 = 0.50], consistent with previously published calibrations. We found no evidence for a relationship between Krithe Mg/Ca and carbonate ion saturation in the North Atlantic Ocean, Nordic Seas, and Arctic Ocean, supporting the use of Krithe Mg/Ca for reconstructing past BWT
Late Holocene sea level variability and Atlantic Meridional Overturning Circulation
Pre-twentieth century sea level (SL) variability remains poorly understood due to limits of tide gauge records, low temporal resolution of tidal marsh records, and regional anomalies caused by dynamic ocean processes, notably multidecadal changes in Atlantic Meridional Overturning Circulation (AMOC). We examined SL and AMOC variability along the eastern United States over the last 2000 years, using a SL curve constructed from proxy sea surface temperature (SST) records from Chesapeake Bay, and twentieth century SL-sea surface temperature (SST) relations derived from tide gauges and instrumental SST. The SL curve shows multidecadal-scale variability (20–30 years) during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA), as well as the twentieth century. During these SL oscillations, short-term rates ranged from 2 to 4 mm yr−1, roughly similar to those of the last few decades. These oscillations likely represent internal modes of climate variability related to AMOC variability and originating at high latitudes, although the exact mechanisms remain unclear. Results imply that dynamic ocean changes, in addition to thermosteric, glacio-eustatic, or glacio-isostatic processes are an inherent part of SL variability in coastal regions, even during millennial-scale climate oscillations such as the MCA and LIA and should be factored into efforts that use tide gauges and tidal marsh sediments to understand global sea level rise
Visual phototransduction components in cephalopod chromatophores suggest dermal photoreception
Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of The Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 218 (2015): 1596-1602, doi: 10.1242/​jeb.117945.Cephalopod molluscs are renowned for their colorful and dynamic body patterns, produced by an
assemblage of skin components that interact with light. These may include iridophores,
leucophores, chromatophores, and (in some species) photophores. Here, we present molecular
evidence suggesting that cephalopod chromatophores, small dermal pigmentary organs that
reflect various colors of light, are photosensitive. RT-PCR revealed the presence of transcripts
encoding rhodopsin and retinochrome within the retinas and skin of the squid Doryteuthis
pealeii, and the cuttlefish Sepia officinalis and Sepia latimanus. In D. pealeii, Gqα and squid
TRP channel transcripts were present in the retina and in all dermal samples. Rhodopsin,
retinochrome, and Gqα transcripts were also found in RNA extracts from dissociated
chromatophores isolated from D. pealeii dermal tissues. In D. pealeii, immunohistochemical
staining labeled rhodopsin, retinochrome, and Gqα proteins in several chromatophore
components, including pigment cell membranes, radial muscle fibers, and sheath cells. This is
the first evidence that cephalopod dermal tissues, and specifically chromatophores, may possess
the requisite combination of molecules required to respond to light.This research was supported by the Office of Naval Research Basic Research Challenge [grant number N00014-10-0989] via a subcontract to T.W.C. and R.T.H.2016-05-1
A metamorphic inorganic framework that can be switched between eight single-crystalline states
The design of highly flexible framework materials requires organic linkers, whereas inorganic materials are more robust but inflexible. Here, by using linkable inorganic rings made up of tungsten oxide (P8W48O184) building blocks, we synthesized an inorganic single crystal material that can undergo at least eight different crystal-to-crystal transformations, with gigantic crystal volume contraction and expansion changes ranging from −2,170 to +1,720 Å3 with no reduction in crystallinity. Not only does this material undergo the largest single crystal-to-single crystal volume transformation thus far reported (to the best of our knowledge), the system also shows conformational flexibility while maintaining robustness over several cycles in the reversible uptake and release of guest molecules switching the crystal between different metamorphic states. This material combines the robustness of inorganic materials with the flexibility of organic frameworks, thereby challenging the notion that flexible materials with robustness are mutually exclusive
Dynamic polarization vision in mantis shrimps
Gaze stabilization is an almost ubiquitous animal behaviour, one that is required to see the world clearly and without blur. Stomatopods, however, only fix their eyes on scenes or objects of interest occasionally. Almost uniquely among animals they explore their visual environment with a series pitch, yaw and torsional (roll) rotations of their eyes, where each eye may also move largely independently of the other. In this work, we demonstrate that the torsional rotations are used to actively enhance their ability to see the polarization of light. Both Gonodactylus smithii and Odontodactylus scyllarus rotate their eyes to align particular photoreceptors relative to the angle of polarization of a linearly polarized visual stimulus, thereby maximizing the polarization contrast between an object of interest and its background. This is the first documented example of any animal displaying dynamic polarization vision, in which the polarization information is actively maximized through rotational eye movements
The Eyes Have It: Regulatory and Structural Changes Both Underlie Cichlid Visual Pigment Diversity
Differential gene expression and coding sequence evolution play complementary roles in the adaptive diversification of cichlid sensory systems
- …