134 research outputs found

    The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity

    Get PDF
    The Developing Human Connectome Project (dHCP) is an Open Science project which provides the first large sample of neonatal functional MRI (fMRI) data with high temporal and spatial resolution. This data enables mapping of intrinsic functional connectivity between spatially distributed brain regions under normal and adverse perinatal circumstances, offering a framework to study the ontogeny of large-scale brain organisation in humans. Here, we characterise in unprecedented detail the maturation and integrity of resting-state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm). First, we applied group independent component analysis (ICA) to define 11 RSNs in term-born infants scanned at 43.5-44.5 weeks postmenstrual age (PMA). Adult-like topography was observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among six higher-order, association RSNs, analogues of the adult networks for language and ocular control were identified, but a complete default mode network precursor was not. Next, we regressed the subject-level datasets from an independent cohort of infants scanned at 37-43.5 weeks PMA against the group-level RSNs to test for the effects of age, sex and preterm birth. Brain mapping in term-born infants revealed areas of positive association with age across four of six association RSNs, indicating active maturation in functional connectivity from 37 to 43.5 weeks PMA. Female infants showed increased connectivity in inferotemporal regions of the visual association network. Preterm birth was associated with striking impairments of functional connectivity across all RSNs in a dose-dependent manner; conversely, connectivity of the superior parietal lobules within the lateral motor network was abnormally increased in preterm infants, suggesting a possible mechanism for specific difficulties such as developmental coordination disorder which occur frequently in preterm children. Overall, we find a robust, modular, symmetrical functional brain organisation at normal term age. A complete set of adult-equivalent primary RSNs is already instated, alongside emerging connectivity in immature association RSNs, consistent with a primary-to-higher-order ontogenetic sequence of brain development. The early developmental disruption imposed by preterm birth is associated with extensive alterations in functional connectivity

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    Get PDF
    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (\u3b4) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    An evidence-based perspective on ‘misconceptions’ regarding pediatric auditory processing disorder

    Get PDF
    In the perspective article “Common Misconceptions Regarding Pediatric Auditory Processing Disorder” (1), the authors attempt to rebut five common “misconceptions” of auditory processing disorder (APD), concerned that children with APD may receive inappropriate or limited management. They describe a chasm between increasing research on APD and the scarcity of “specialized clinics providing diagnosis and management of APD,” seeing that connection resulting in a failure to translate research into practice. We do not recognize this as a failure. In our opinion, the increasing research interest reflects greater recognition of the importance of evidence-based practice, together with the consolidation of a different perspective—that what is needed is increased collaboration between disciplines, rather than “specialized” audiology APD clinics where diagnosis is based solely on arbitrary audiological test batteries and criteria (2, 3).There are several definitions of APD. The BSA, 2018 describe APD as being “characterized by poor perception of speech and non-speech sounds. It has its origins in impaired neural function, which may include both the afferent and efferent pathways of the central auditory nervous system (CANS), as well as other neural processing systems that provide “top down” modulation of the CANS. APD impacts on everyday life mainly through a reduced ability to listen, and therefore respond appropriately to speech and other sounds” (3). We share the concerns of Iliadou and Kiese-Himmel [(1); hereafter “the perspective article”] that children with listening difficulties in everyday life deserve proper diagnosis and management in order to prevent or limit their negative impact on academic and social skills and well-being. However, we do not share the perspective that APD has been shown to be a distinct diagnostic entity or that we should focus on traditional auditory testing procedures that lack evidence.Our purpose here is to argue that the “misconceptions” identified in the perspective article are not misconceptions at all, and arise from the opinions of the authors rather than substantial evidence. We reframe those “misconceptions” in three discussion points: (1) APD as a separate diagnosis, (2) Auditory processing and cognitive skills, and (3) Quality of auditory processing tests

    Testing Steady-State Implications for the NAIRU

    No full text
    Estimates of the NAIRU are usually derived either from a Phillips curve or from a wage curve. This paper investigates the correspondence between the operational NAIRU concepts and the steady state of a dynamic wage-price model. We derive the parameter restrictions that secure that correspondence. The full set of restrictions can be tested by econometric analysis of the wage-price system, and this method is demonstrated for Norwegian data. A set of necessary conditions can be tested from estimated wage curves alone. Existing international evidence from empirical wage equations are reinterpreted in light of these conditions. © 2003 President and Fellows of Harvard College and the Massachusetts Institute of Technology.
    corecore