49 research outputs found
Unified dark energy models : a phenomenological approach
A phenomenological approach is proposed to the problem of universe
accelerated expansion and of the dark energy nature. A general class of models
is introduced whose energy density depends on the redshift in such a way
that a smooth transition among the three main phases of the universe evolution
(radiation era, matter domination, asymptotical de Sitter state) is naturally
achieved. We use the estimated age of the universe, the Hubble diagram of Type
Ia Supernovae and the angular size - redshift relation for compact and
ultracompact radio structures to test whether the model is in agreement with
astrophysical observation and to constrain its main parameters. Although
phenomenologically motivated, the model may be straightforwardly interpreted as
a two fluids scenario in which the quintessence is generated by a suitably
chosen scalar field potential. On the other hand, the same model may also be
read in the context of unified dark energy models or in the framework of
modified Friedmann equation theories.Comment: 12 pages, 10 figures, accepted for publication on Physical Review
Numerical simulations of the Warm-Hot Intergalactic Medium
In this paper we review the current predictions of numerical simulations for
the origin and observability of the warm hot intergalactic medium (WHIM), the
diffuse gas that contains up to 50 per cent of the baryons at z~0. During
structure formation, gravitational accretion shocks emerging from collapsing
regions gradually heat the intergalactic medium (IGM) to temperatures in the
range T~10^5-10^7 K. The WHIM is predicted to radiate most of its energy in the
ultraviolet (UV) and X-ray bands and to contribute a significant fraction of
the soft X-ray background emission. While O VI and C IV absorption systems
arising in the cooler fraction of the WHIM with T~10^5-10^5.5 K are seen in
FUSE and HST observations, models agree that current X-ray telescopes such as
Chandra and XMM-Newton do not have enough sensitivity to detect the hotter
WHIM. However, future missions such as Constellation-X and XEUS might be able
to detect both emission lines and absorption systems from highly ionised atoms
such as O VII, O VIII and Fe XVII.Comment: 18 pages, 5 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 14; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Inflation, cold dark matter, and the central density problem
A problem with high central densities in dark halos has arisen in the context
of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is
often justified by appealing to the inflation scenario, inflationary models
with mild deviations from scale-invariance are not uncommon and models with
significant running of the spectral index are plausible. Even mild deviations
from scale-invariance can be important because halo collapse times and
densities depend on the relative amount of small-scale power. We choose several
popular models of inflation and work out the ramifications for galaxy central
densities. For each model, we calculate its COBE-normalized power spectrum and
deduce the implied halo densities using a semi-analytic method calibrated
against N-body simulations. We compare our predictions to a sample of dark
matter-dominated galaxies using a non-parametric measure of the density. While
standard n=1, LCDM halos are overdense by a factor of 6, several of our example
inflation+CDM models predict halo densities well within the range preferred by
observations. We also show how the presence of massive (0.5 eV) neutrinos may
help to alleviate the central density problem even with n=1. We conclude that
galaxy central densities may not be as problematic for the CDM paradigm as is
sometimes assumed: rather than telling us something about the nature of the
dark matter, galaxy rotation curves may be telling us something about inflation
and/or neutrinos. An important test of this idea will be an eventual consensus
on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our
successful models have values of sigma_8 approximately 0.75, which is within
the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1)
are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's
Comments, error in Eq. (18) corrected, references updated and corrected,
conclusions unchanged. Version accepted for publication in Phys. Rev. D,
scheduled for 15 August 200
Next-generation test of cosmic inflation
The increasing precision of cosmological datasets is opening up new
opportunities to test predictions from cosmic inflation. Here we study the
impact of high precision constraints on the primordial power spectrum and show
how a new generation of observations can provide impressive new tests of the
slow-roll inflation paradigm, as well as produce significant discriminating
power among different slow-roll models. In particular, we consider
next-generation measurements of the Cosmic Microwave Background (CMB)
temperature anisotropies and (especially) polarization, as well as new
Lyman- measurements that could become practical in the near future. We
emphasize relationships between the slope of the power spectrum and its first
derivative that are nearly universal among existing slow-roll inflationary
models, and show how these relationships can be tested on several scales with
new observations. Among other things, our results give additional motivation
for an all-out effort to measure CMB polarization.Comment: 10 pages, 8 figures, to appear in PRD; major changes are a reanalysis
in terms of better cosmological parameters and clarifications on the
contributions of polarization and Lyman-alpha dat
Weak Lensing and CMB: Parameter forecasts including a running spectral index
We use statistical inference theory to explore the constraints from future
galaxy weak lensing (cosmic shear) surveys combined with the current CMB
constraints on cosmological parameters, focusing particularly on the running of
the spectral index of the primordial scalar power spectrum, . Recent
papers have drawn attention to the possibility of measuring by
combining the CMB with galaxy clustering and/or the Lyman- forest. Weak
lensing combined with the CMB provides an alternative probe of the primordial
power spectrum. We run a series of simulations with variable runnings and
compare them to semi-analytic non-linear mappings to test their validity for
our calculations. We find that a ``Reference'' cosmic shear survey with
and galaxies per steradian can reduce the
uncertainty on and by roughly a factor of 2 relative to the
CMB alone. We investigate the effect of shear calibration biases on lensing by
including the calibration factor as a parameter, and show that for our
Reference Survey, the precision of cosmological parameter determination is only
slightly degraded even if the amplitude calibration is uncertain by as much as
5%. We conclude that in the near future weak lensing surveys can supplement the
CMB observations to constrain the primordial power spectrum.Comment: 12 pages, 10 figures, revtex4. Final form to appear in Phys Rev
Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly