116 research outputs found

    Intramammary infusion of a live culture of Lactococcus lactis for treatment of bovine mastitis: comparison with antibiotic treatment in field trials

    Get PDF
    A treatment containing a live food-grade organism, Lactococcus lactis DPC3147, was compared with conventional antibiotic therapy for its potential to treat bovine chronic subclinical or clinical mastitis in two separate field trials. Effects on disease symptoms and bacteriology were monitored in response to infusion with the culture in each trial. In the first trial, the live culture treatment was compared with an intramammary antibiotic (n=11 quarters for each treatment). Results from this small trial demonstrated that the live culture had potential to be as effective at eliminating chronic subclinical infections as an antibiotic treatment. By day 12, 7 of the 11 quarters treated with the live culture were pathogen-free compared with 5 of the 11 antibiotic-treated infected quarters. Somatic cell counts (SCC) remained relatively unchanged regardless of treatment: average log SCC pre- and post-treatment in the lactococci-treated group were 6·33±0·41 (day 0) and 6·27±0·43 cells/ml (day 12) and average log SCC pre- and post-treatment in the antibiotic-treated group were 6·34±0·37 and 6·22±0·46 cells/ml on day 0 and on day 12, respectively. In the second trial, the live culture was compared with an intramammary antibiotic for the treatment of naturally occurring clinical mastitis cases (n=25 quarters for each treatment). Following a 14-d experimental period, similar bacteriological responses were observed in 7 out of 25 live culture treated quarters and 9 out of 25 antibiotic-treated quarters. Additionally, 15 of 25 cases treated with the culture and 18 of 25 cases treated with the antibiotic did not exhibit clinical signs of the disease following treatment. The results of these trials suggest that live culture treatment with Lc. lactis DPC3147 may be as efficacious as common antibiotic treatments in some instances

    Efficacy of a teat dip containing the bacteriocin lacticin 3147 to eliminate Gram-positive pathogens associated with bovine mastitis

    Get PDF
    On most dairy farms teat dips are applied to the teats of cows either before or after milking in order to prevent pathogens from gaining access to the mammary gland via the teat canal. In the present experiments, a natural teat dip was developed using a fermentate containing the live bacterium Lactococcus lactis DPC 3251. This bacterium produces lacticin 3147, a two-component lantibiotic which was previously shown to effectively kill Gram-positive mastitis pathogens. Lacticin 3147 activity in the fermentate was retained at 53% of its original level following storage for 3 weeks at 4°C. In the initial experiments in vitro, 105 colony-forming units/ml (cfu/ml) of either Staphylococcus aureus, Streptococcus dysgalactiae or Streptococcus uberis were introduced into the lacticin-containing fermentate. Neither Staph. aureus nor Str. dysgalactiae could be detected after 30 min or 15 min, respectively, while Str. uberis was reduced approximately 100-fold after 15 min. Following these trials, preliminary experiments were performed in vivo on teats of lactating dairy cows. In these experiments, teats were coated with each of the challenge organisms and then dipped with the lacticin-containing fermented teat dip. Following a dip contact time of 10 min, staphylococci were reduced by 80% when compared with the undipped control teat. Streptococcal challenges were reduced by 97% for Str. dysgalactiae and by 90% for Str. uberis. These trials showed that the teat dip is able to reduce mastitis pathogens on the teats of lactating cows

    Update on the development of a novel dry cow therapy using a bismuth-based intramammary teat seal in combination with the bacteriocin lacticin 3147

    Get PDF
    peer-reviewedPublic concerns over the widespread prophylactic use of antibiotics have led to a search for alternatives to dry cow therapy for the prevention of intramammary infections. A popular alternative is to infuse a teat seal at drying-off. The teat seal is a viscous non-antibiotic formulation and when it is infused into the teat canal and the teat sinus it forms an internal seal that provides a physical barrier to invasion by mastitis-causing pathogens. Enhancement of teat seal formulations may be achieved using non-antibiotic additives such as bacteriocins, potent proteins produced by some bacteria that have the ability to kill other microorganisms. This paper traces the history of investigations at Moorepark Research Centre into the efficacy of teat seal plus lacticin 3147, a bacteriocin produced by Lactococcus lactis DPC3147, in the prevention of intramammary infections in dry cows. Indications from on-going investigations are that a dry cow formulation combining the two products has considerable potential as a non-antibiotic prophylactic product

    Genome Sequence of Staphylococcus saprophyticus DPC5671, a Strain Isolated from Cheddar Cheese

    Get PDF
    peer-reviewedThe draft genome sequence of Staphylococcus saprophyticus DPC5671, isolated from cheddar cheese, was determined. S. saprophyticus is a common Gram-positive bacterium detected on the surface of smear-ripened cheese and other fermented foods

    N-3 Polyunsaturated Fatty Acids (PUFAs) Reverse the Impact of Early-Life Stress on the Gut Microbiota

    Get PDF
    Supporting Information S1 File. Microbiota Data Set. NS.S, NS.LD, NS.HD stand for non-separated Saline, non-separated Low Dose, non-separated High Dose, respectively. MS.S, MS.LD, MS.HD stand for maternally separated Saline, maternally separated Low Dose, maternally separated High Dose, respectively. (ZIP)peer-reviewedBackground Early life stress is a risk factor for many psychiatric disorders ranging from depression to anxiety. Stress, especially during early life, can induce dysbiosis in the gut microbiota, the key modulators of the bidirectional signalling pathways in the gut-brain axis that underline several neurodevelopmental and psychiatric disorders. Despite their critical role in the development and function of the central nervous system, the effect of n-3 polyunsaturated fatty acids (n-3 PUFAs) on the regulation of gut-microbiota in early-life stress has not been explored. Methods and Results Here, we show that long-term supplementation of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) (80% EPA, 20% DHA) n-3 PUFAs mixture could restore the disturbed gut-microbiota composition of maternally separated (MS) female rats. Sprague-Dawley female rats were subjected to an early-life stress, maternal separation procedure from postnatal days 2 to 12. Non-separated (NS) and MS rats were administered saline, EPA/DHA 0.4 g/kg/day or EPA/DHA 1 g/kg/day, respectively. Analysis of the gut microbiota in adult rats revealed that EPA/DHA changes composition in the MS, and to a lesser extent the NS rats, and was associated with attenuation of the corticosterone response to acute stress. Conclusions In conclusion, EPA/DHA intervention alters the gut microbiota composition of both neurodevelopmentally normal and early-life stressed animals. This study offers insights into the interaction between n-3 PUFAs and gut microbes, which may play an important role in advancing our understanding of disorders of mood and cognitive functioning, such as anxiety and depression.Research was funded by Food Institutional Research Measure (FIRM) under Grant No. 10/RD/TMFRC/709, the APC Microbiome Institute under Grant No. 07/CE/B1368 and 12/RC/2273, Science Foundation Ireland (SFI) under Grant No. 12/IA/1537

    Species classifier choice is a key consideration when analysing low-complexity food microbiome data

    Get PDF
    peer-reviewedBackground The use of shotgun metagenomics to analyse low-complexity microbial communities in foods has the potential to be of considerable fundamental and applied value. However, there is currently no consensus with respect to choice of species classification tool, platform, or sequencing depth. Here, we benchmarked the performances of three high-throughput short-read sequencing platforms, the Illumina MiSeq, NextSeq 500, and Ion Proton, for shotgun metagenomics of food microbiota. Briefly, we sequenced six kefir DNA samples and a mock community DNA sample, the latter constructed by evenly mixing genomic DNA from 13 food-related bacterial species. A variety of bioinformatic tools were used to analyse the data generated, and the effects of sequencing depth on these analyses were tested by randomly subsampling reads. Results Compositional analysis results were consistent between the platforms at divergent sequencing depths. However, we observed pronounced differences in the predictions from species classification tools. Indeed, PERMANOVA indicated that there was no significant differences between the compositional results generated by the different sequencers (p = 0.693, R2 = 0.011), but there was a significant difference between the results predicted by the species classifiers (p = 0.01, R2 = 0.127). The relative abundances predicted by the classifiers, apart from MetaPhlAn2, were apparently biased by reference genome sizes. Additionally, we observed varying false-positive rates among the classifiers. MetaPhlAn2 had the lowest false-positive rate, whereas SLIMM had the greatest false-positive rate. Strain-level analysis results were also similar across platforms. Each platform correctly identified the strains present in the mock community, but accuracy was improved slightly with greater sequencing depth. Notably, PanPhlAn detected the dominant strains in each kefir sample above 500,000 reads per sample. Again, the outputs from functional profiling analysis using SUPER-FOCUS were generally accordant between the platforms at different sequencing depths. Finally, and expectedly, metagenome assembly completeness was significantly lower on the MiSeq than either on the NextSeq (p = 0.03) or the Proton (p = 0.011), and it improved with increased sequencing depth. Conclusions Our results demonstrate a remarkable similarity in the results generated by the three sequencing platforms at different sequencing depths, and, in fact, the choice of bioinformatics methodology had a more evident impact on results than the choice of sequencer did.This research was funded by Science Foundation Ireland in the form of a centre grant (APC Microbiome Institute grant number SFI/12/RC/2273). Research in the Cotter laboratory is also funded by Science Foundation Ireland through the PI award “Obesibiotics” (11/PI/1137). Orla O’Sullivan is funded by Science Foundation Ireland through a Starting Investigator Research Grant award (13/SIRG/2160)

    Colonic Gene Expression and Fecal Microbiota in Diarrhea-predominant Irritable Bowel Syndrome : Increased Toll-like Receptor 4 but Minimal Inflammation and no Response to Mesalazine

    Get PDF
    Background/Aims Diarrhea-predominant irritable bowel syndrome (IBS-D) has been previously associated with evidence of immune activation and altered microbiota. Our aim is to assess the effect of the anti-inflammatory agent, mesalazine, on inflammatory gene expression and microbiota composition in IBS-D. Methods We studied a subset of patients (n = 43) from a previously published 12-week radomized placebo-controlled trial of mesalazine. Mucosal biopsies were assessed by immunohistochemistry and reverse transcription-polymerase chain reaction for a range of markers of inflammation, altered permeability, and sensory receptors including Toll-like receptors (TLRs) at randomization after treatment. All biopsy data were compared to 21 healthy controls. Patient's stool microbiota composition was analysed through 16S ribosomal RNA sequencing. Results We found no evidence of increased immune activation compared to healthy controls. However, we did find increased expression of receptors in both sensory pathways and innate immune response including TLR4. Higher TLR4 expression was associated with greater urgency. TLR4 expression correlated strongly with the expression of the receptors bradykinin receptor B2, chemerin chemokine-like receptor 1, and transient receptor potential cation channel, subfamily A, member 1 as well as TLR4's downstream adaptor myeloid differentiation factor 88. Mesalazine had minimal effect on either gene expression or microbiota composition. Conclusions Biopsies from a well-characterized IBS-D cohort showed no substantial inflammation. Mesalazine has little effect on gene expression and its previous reported effect on fecal microbiota associated with much greater inflammation found in inflammatory bowel diseases is likely secondary to reduced inflammation. Increased expression of TLR4 and correlated receptors in IBS may mediate a general increase in sensitivity to external stimuli, particularly those that signal via the TLR system.Peer reviewe

    Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir

    Get PDF
    peer-reviewedKefir is a putatively health-promoting dairy beverage that is produced when a kefir grain, consisting of a consortium of microorganisms, is added to milk to initiate a natural fermentation. Here, a detailed analysis was carried out to determine how the microbial population, gene content, and flavor of three kefirs from distinct geographic locations change over the course of 24-h fermentations. Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the dominant bacterial species in kefir during early stages of fermentations but that Leuconostoc mesenteroides became more prevalent in later stages. This pattern is consistent with an observation that genes involved in aromatic amino acid biosynthesis were absent from L. kefiranofaciens but were present in L. mesenteroides. Additionally, these shifts in the microbial community structure, and associated pathways, corresponded to changes in the levels of volatile compounds. Specifically, Acetobacter spp. correlated with acetic acid; Lactobacillus spp. correlated with carboxylic acids, esters and ketones; Leuconostoc spp. correlated with acetic acid and 2,3-butanedione; and Saccharomyces spp. correlated with esters. The correlation data suggest a causal relationship between microbial taxa and flavor that is supported by observations that addition of L. kefiranofaciens NCFB 2797 increased the levels of esters and ketones whereas addition of L. mesenteroides 213M0 increased the levels of acetic acid and 2,3-butanedione. Finally, we detected genes associated with probiotic functionalities in the kefir microbiome. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein and can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods. IMPORTANCE Traditional fermented foods represent relatively low-complexity microbial environments that can be used as model microbial communities to understand how microbes interact in natural environments. Our results illustrate the dynamic nature of kefir fermentations and microbial succession patterns therein. In the process, the link between individual species, and associated pathways, with flavor compounds is revealed and several genes that could be responsible for the purported gut health-associated benefits of consuming kefir are identified. Ultimately, in addition to providing an important fundamental insight into microbial interactions, this information can be applied to optimize the fermentation processes, flavors, and health-related attributes of this and other fermented foods

    Analysis of the Milk Kefir Pan-Metagenome Reveals Four Community Types, Core Species and Associated Metabolic Pathways

    Get PDF
    peer-reviewedA comprehensive metagenomics-based investigation of the microorganisms present within milk kefir communities from across the globe was carried out with a view to defining the milk kefir pan-metagenome, including details relating to core and non-core components. Milk kefir samples, generated by inoculating full fat, pasteurized cow’s milk with 64 kefir grains sourced from 25 different countries, were analyzed. We identified core features, including a consistent pattern of domination by representatives from the species Lactobacillus helveticus or the sub-species Lactobacillus kefiranofaciens subsp. kefiranofaciens, Lactococcus lactis subsp. lactis or Lla. cremoris subsp. cremoris in each kefir. Notably, even in kefirs where the lactococci did not dominate, they and 51 associated metabolic pathways were identified across all metagenomes. These insights can contribute to future efforts to create tailored kefir-based microbial communities for different applications and assist regulators and producers to ensure that kefir products have a microbial composition that reflects the artisanal beverage

    The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency

    Get PDF
    Methane is generated in the foregut of all ruminant animals by the microorganisms present. Dietary manipulation is regarded as the most effective and most convenient way to reduce methane emissions (and in turn energy loss in the animal) and increase nitrogen utilization efficiency. This review examines the impact of diet on bovine rumen function and outlines what is known about the rumen microbiome. Our understanding of this area has increased significantly in recent years due to the application of omics technologies to determine microbial composition and functionality patterns in the rumen. This information can be combined with data on nutrition, rumen physiology, nitrogen excretion and/or methane emission to provide comprehensive insights into the relationship between rumen microbial activity, nitrogen utilisation efficiency and methane emission, with an ultimate view to the development of new and improved intervention strategies
    corecore