38 research outputs found

    A priori and on-line route optimization for unmanned underwater vehicles

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-156).The U.S. military considers Unmanned Underwater Vehicles (UUVs) a critical component of the future for two primary reasons - they are effective force multipliers and a significant risk-reducing agent. As the military's technology improves and UUVs become a reliable mission asset, the vehicle's ability to make intelligent decisions will be crucial to future operations. The thesis develops various algorithms to solve the UUV Mission-Planning Problem (UUVMPP), where the UUV must choose which tasks to perform in which sequence in a stochastic mission environment. The objective is to find the most profitable way to execute tasks with restrictions of total mission time, energy, time-restricted areas, and weather conditions. Since the UUV accumulates navigation error over time while maneuvering underwater, the UUV must occasionally halt operations to re-orient itself via a navigation fix. While a navigation fix takes time and increases the likelihood of exposing the vehicle's position to potential adversaries, a reduction in navigation error allows the UUV to perform tasks and navigate with a greater amount of certainty. The algorithms presented in this thesis successfully incorporate navigation fixes into the mission-planning process. The thesis considers Mixed-Integer Programming, Exact Dynamic Programming, and an Approximate Dynamic Programming technique known as Rollout to determine the optimal a priori route that meets operational constraints with a specified probability. The thesis then shows how these formulations can solve and re-solve the UUVMPP on-line. In particular, the Rollout Algorithm finds task route solutions on average 96% of the optimal solution a priori and 98% of the optimal solution on-line compared to exact algorithms; with a significant reduction in computation run time, the Rollout Algorithm permits the solving of increasingly complex mission scenarios.by Brian A. Crimmel.S.M

    Electroacupuncture enhances spermatogenesis in rats after scrotal heat treatment

    Get PDF
    Spermatogenesis is regulated by a cascade of steroid regulated genes in the testis. Recent studies suggested that acupuncture may improve fertility in men with abnormal semen parameters. Yet, the underlying mechanisms in which acupuncture enhances spermatogenesis remain largely unknown. Here we used a scrotal heat-treated rat model to study the effect of electroacupuncture (EA) on recovery of spermatogenesis. In this model, spermatogenesis was disrupted by 30 min scrotal heat treatment at 43°C. Ten sessions of EA were given at Baihui (GV20), Guanyuan (CV4), Zusanli (ST36) and Sanyinjiao (SP6) from day 9 to day 36 post-treatment. Sperm motility and production, morphology of the germinal epithelium by Johnsen’s scoring, germ cell apoptosis by TUNEL staining, proliferation by proliferating cell nuclear antigen (PCNA) staining, as well as serum testosterone and inhibin B levels by immunoassays were evaluated on day 0, 1, 9, 25, 37, 46, 56 and 79. When compared with the heat-treated (H) group, the heat-treated plus EA (H+EA) group showed a significant increase (p < 0.05) in PCNA-positive cells and inhibin B levels on days 37 and 46, and a higher Johnsen’s score till day 56. On day 79, motile spermatozoa could be found in the vas deferens of H+EA group only. Consistently, there was a trend of improved motility and increased number of motile epididymal spermatozoa in the H+EA group than the H group; while apoptosis of germ cells and serum testosterone levels were similar between the two groups. Taken together, EA enhanced germ cell proliferation through improvement of Sertoli cell functions. This may facilitate the recovery of spermatogenesis and may restore normal semen parameters in subfertile patients

    Water Management Decision Making in the Face of Multiple Forms of Uncertainty and Risk

    Get PDF
    In the Wasatch Range Metropolitan Area of Northern Utah, water management decision makers confront multiple forms of uncertainty and risk. Adapting to these uncertainties and risks is critical for maintaining the long‐term sustainability of the region\u27s water supply. This study draws on interview data to assess the major challenges climatic and social changes pose to Utah\u27s water future, as well as potential solutions. The study identifies the water management adaptation decision‐making space shaped by the interacting institutional, social, economic, political, and biophysical processes that enable and constrain sustainable water management. The study finds water managers and other water actors see challenges related to reallocating water, including equitable water transfers and stakeholder cooperation, addressing population growth, and locating additional water supplies, as more problematic than the challenges posed by climate change. Furthermore, there is significant disagreement between water actors over how to best adapt to both climatic and social changes. This study concludes with a discussion of the path dependencies that present challenges to adaptive water management decision making, as well as opportunities for the pursuit of a new water management paradigm based on soft‐path solutions. Such knowledge is useful for understanding the institutional and social adaptations needed for water management to successfully address future uncertainties and risks

    124 Studies in Fiction

    No full text

    Changes in job-related health insurance, 1996-99 /

    No full text
    "July 2002"--P. [4] of cover."The data in this report come from the private-sector sample of the Medical Expenditure Panel Survey Insurance Component (MEPS IC)"--P. 3.Title from cover.Mode of access: Internet
    corecore