42 research outputs found

    Reconstitution of an active human CENP-E motor

    Get PDF
    CENP-E is a large kinesin motor protein which plays pivotal roles in mitosis by facilitating chromosome capture and alignment, and promoting microtubule flux in the spindle. So far, it has not been possible to obtain active human CENP-E to study its molecular properties. Xenopus CENP-E motor has been characterized in vitro and is used as a model motor; however, its protein sequence differs significantly from human CENP-E. Here, we characterize human CENP-E motility in vitro. Full-length CENP-E exhibits an increase in run length and longer residency times on microtubules when compared to CENP-E motor truncations, indicating that the C-terminal microtubule-binding site enhances the processivity when the full-length motor is active. In contrast with constitutively active human CENP-E truncations, full-length human CENP-E has a reduced microtubule landing rate in vitro, suggesting that the non-motor coiled-coil regions self-regulate motor activity. Together, we demonstrate that human CENP-E is a processive motor, providing a useful tool to study the mechanistic basis for how human CENP-E drives chromosome congression and spindle organization during human cell division

    Diseño de un manual de detección de ansiedad social en adolescentes

    Get PDF
    Curso de Especial InterésEl objetivo de este trabajo de grado ha sido diseñar un manual dirigido a padres y docentes, en el que se establezcan técnicas de detección de ansiedad social en adolescentes; el diseño de este manual permite un aprendizaje significativo de una forma diferente, en un lenguaje claro y preciso, en formato digital para un fácil acceso y portabilidad del material, logrando de esta forma, que la población adolescente sea beneficiada a través de las acciones que se emprenderán por parte de los padres de familia, docentes y profesionales.142 p.RESUMEN 1. JUSTIFICACIÓN 2. OBJETIVOS 3. ESTUDIO DEL MERCADO 4. PRESENTACIÓN DEL PRODUCTO 5. CLIENTES – SEGMENTACIÓN 6. COMPETENCIA 7. CANALES DE DISTRIBUCIÓN 8. RESULTADOS DEL ESTUDIO DE MERCADO 9. DISCUSIÓN DEL ESTUDIO DE MERCADO 10. PRESUPUESTO 11. RESULTADOS 12. CONCLUSIONES REFERENCIAS APÉNDICESPregradoPsicólog

    Volatile Compounds in Citrus Essential Oils: A Comprehensive Review

    Get PDF
    [EN] The essential oil fraction obtained from the rind of Citrus spp. is rich in chemical compounds of interest for the food and perfume industries, and therefore has been extensively studied during the last decades. In this manuscript, we provide a comprehensive review of the volatile composition of this oil fraction and rind extracts for the 10 most studied Citrus species: C. sinensis (sweet orange), C. reticulata (mandarin), C. paradisi (grapefruit), C. grandis (pummelo), C. limon (lemon), C. medica (citron), C. aurantifolia (lime), C. aurantium (bitter orange), C. bergamia (bergamot orange), and C. junos (yuzu). Forty-nine volatile organic compounds have been reported in all 10 species, most of them terpenoid (90%), although about half of the volatile compounds identified in Citrus peel are non-terpenoid. Over 400 volatiles of different chemical nature have been exclusively described in only one of these species and some of them could be useful as species biomarkers. A hierarchical cluster analysis based on volatile composition arranges these Citrus species in three clusters which essentially mirrors those obtained with genetic information. The first cluster is comprised by C. reticulata, C. grandis, C. sinensis, C. paradisi and C. aurantium, and is mainly characterized by the presence of a larger abundance of non-terpenoid ester and aldehyde compounds than in the other species reviewed. The second cluster is comprised by C. junos, C. medica, C. aurantifolia, and C. bergamia, and is characterized by the prevalence of mono- and sesquiterpene hydrocarbons. Finally, C. limon shows a particular volatile profile with some sulfur monoterpenoids and non-terpenoid esters and aldehydes as part of its main differential peculiarities. A systematic description of the rind volatile composition in each of the species is provided together with a general comparison with those in leaves and blossoms. Additionally, the most widely used techniques for the extraction and analysis of volatile Citrus compounds are also described.This work was supported in part by the European Commission Horizon 2020 program TRADITOM grant 634561 and TomGEM grant 679796 to JR and AG.González-Mas, M.; Rambla Nebot, JL.; López-Gresa, MP.; Blazquez, M.; Granell Richart, A. (2019). Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Frontiers in Plant Science. 10:1-18. https://doi.org/10.3389/fpls.2019.00012S11810Abreu, I., Da Costa, N. C., van Es, A., Kim, J.-A., Parasar, U., & Poulsen, M. L. (2017). Natural Occurrence of Aldol Condensation Products in Valencia Orange Oil. Journal of Food Science, 82(12), 2805-2815. doi:10.1111/1750-3841.13948Ahmed, M., Arpaia, M. L., & Scora, R. W. (2001). Seasonal Variation in Lemon (Citrus limonL. Burm. f) Leaf and Rind Oil Composition. Journal of Essential Oil Research, 13(3), 149-153. doi:10.1080/10412905.2001.9699646AKAKABE, Y., KUSUNOKI, A., TANAKA, R., & KANETSUNE, Y. (2010). A Comparison of Volatile Components of Setomi with Its Parent Cultivars. Bioscience, Biotechnology, and Biochemistry, 74(3), 659-662. doi:10.1271/bbb.90722AKAKABE, Y., SAKAMOTO, M., IKEDA, Y., & TANAKA, M. (2008). Identification and Characterization of Volatile Components of the Japanese Sour Citrus FruitCitrus nagato-yuzukichiTanaka. Bioscience, Biotechnology, and Biochemistry, 72(7), 1965-1968. doi:10.1271/bbb.80144Aliberti, L., Caputo, L., De Feo, V., De Martino, L., Nazzaro, F., & Souza, L. (2016). Chemical Composition and in Vitro Antimicrobial, Cytotoxic, and Central Nervous System Activities of the Essential Oils of Citrus medica L. cv. ‘Liscia’ and C. medica cv. ‘Rugosa’ Cultivated in Southern Italy. Molecules, 21(9), 1244. doi:10.3390/molecules21091244Alissandrakis, E. (2003). Ultrasound-assisted extraction of volatile compounds from citrus flowers and citrus honey. Food Chemistry, 82(4), 575-582. doi:10.1016/s0308-8146(03)00013-xAlonzo, G., Del Bosco, S. F., Palazzolo, E., Saiano, F., & Tusa, N. (2000). Citrus cybrid leaf essential oil. Flavour and Fragrance Journal, 15(2), 91-95. doi:10.1002/(sici)1099-1026(200003/04)15:23.0.co;2-xAsikin, Y., Maeda, G., Tamaki, H., Mizu, M., Oku, H., & Wada, K. (2015). Cultivation line and fruit ripening discriminations of Shiikuwasha (Citrus depressa Hayata) peel oils using aroma compositional, electronic nose, and antioxidant analyses. Food Research International, 67, 102-110. doi:10.1016/j.foodres.2014.11.015Asikin, Y., Taira, I., Inafuku-Teramoto, S., Sumi, H., Ohta, H., Takara, K., & Wada, K. (2012). The Composition of Volatile Aroma Components, Flavanones, and Polymethoxylated Flavones in Shiikuwasha (Citrus depressa Hayata) Peels of Different Cultivation Lines. Journal of Agricultural and Food Chemistry, 60(32), 7973-7980. doi:10.1021/jf301848sAsikin, Y., Taira, I., Inafuku, S., Sumi, H., Sawamura, M., Takara, K., & Wada, K. (2012). Volatile Aroma Components and Antioxidant Activities of the Flavedo Peel Extract of Unripe Shiikuwasha (Citrus depressa Hayata). Journal of Food Science, 77(4), C469-C475. doi:10.1111/j.1750-3841.2011.02604.xBelsito, E. L., Carbone, C., Di Gioia, M. L., Leggio, A., Liguori, A., Perri, F., … Viscomi, M. C. (2007). Comparison of the Volatile Constituents in Cold-Pressed Bergamot Oil and a Volatile Oil Isolated by Vacuum Distillation. Journal of Agricultural and Food Chemistry, 55(19), 7847-7851. doi:10.1021/jf070997qBen Hsouna, A., Ben Halima, N., Smaoui, S., & Hamdi, N. (2017). Citrus lemon essential oil: chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids in Health and Disease, 16(1). doi:10.1186/s12944-017-0487-5Benelli, P., Riehl, C. A. S., Smânia, A., Smânia, E. F. A., & Ferreira, S. R. S. (2010). Bioactive extracts of orange (Citrus sinensis L. Osbeck) pomace obtained by SFE and low pressure techniques: Mathematical modeling and extract composition. The Journal of Supercritical Fluids, 55(1), 132-141. doi:10.1016/j.supflu.2010.08.015Benjamin, G., Tietel, Z., & Porat, R. (2013). Effects of Rootstock/Scion Combinations on the Flavor of Citrus Fruit. Journal of Agricultural and Food Chemistry, 61(47), 11286-11294. doi:10.1021/jf402892pBlanco Tirado, C., Stashenko, E. E., Combariza, M. Y., & Martinez, J. R. (1995). Comparative study of Colombian citrus oils by high-resolution gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography A, 697(1-2), 501-513. doi:10.1016/0021-9673(94)00955-9Blázquez, M. A., & Carbó, E. (2015). Control of Portulaca oleracea by boldo and lemon essential oils in different soils. Industrial Crops and Products, 76, 515-521. doi:10.1016/j.indcrop.2015.07.019Bonaccorsi, I. L., McNair, H. M., Brunner, L. A., Dugo, P., & Dugo, G. (1999). Fast HPLC for the Analysis of Oxygen Heterocyclic Compounds of Citrus Essential Oils†. Journal of Agricultural and Food Chemistry, 47(10), 4237-4239. doi:10.1021/jf990417sBoussaada, O., & Chemli, R. (2006). Chemical Composition of Essential Oils from Flowers, Leaves and Peel of Citrus aurantium L. var. amara from Tunisia. Journal of Essential Oil Bearing Plants, 9(2), 133-139. doi:10.1080/0972060x.2006.10643484Boussaada, O., Skoula, M., Kokkalou, E., & Chemli, R. (2007). Chemical Variability of Flowers, Leaves, and Peels Oils of Four Sour Orange Provenances. Journal of Essential Oil Bearing Plants, 10(6), 453-464. doi:10.1080/0972060x.2007.10643579Brophy, J. J., Goldsack, R. J., & Forster, P. I. (2001). The Leaf Oils of the Australian Species ofCitrus(Rutaceae). Journal of Essential Oil Research, 13(4), 264-268. doi:10.1080/10412905.2001.9699690Buettner, A., Mestres, M., Fischer, A., Guasch, J., & Schieberle, P. (2003). Evaluation of the most odour-active compounds in the peel oil of clementines (citrus reticulata blanco cv. clementine). European Food Research and Technology, 216(1), 11-14. doi:10.1007/s00217-002-0586-yCannon, R. J., Kazimierski, A., Curto, N. L., Li, J., Trinnaman, L., Jańczuk, A. J., … Chen, M. Z. (2015). Identification, Synthesis, and Characterization of Novel Sulfur-Containing Volatile Compounds from the In-Depth Analysis of Lisbon Lemon Peels (Citrus limonL. Burm. f. cv. Lisbon). Journal of Agricultural and Food Chemistry, 63(7), 1915-1931. doi:10.1021/jf505177rCarbonell-Caballero, J., Alonso, R., Ibañez, V., Terol, J., Talon, M., & Dopazo, J. (2015). A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the GenusCitrus. Molecular Biology and Evolution, 32(8), 2015-2035. doi:10.1093/molbev/msv082Casilli, A., Decorzant, E., Jaquier, A., & Delort, E. (2014). Multidimensional gas chromatography hyphenated to mass spectrometry and olfactometry for the volatile analysis of citrus hybrid peel extract. Journal of Chromatography A, 1373, 169-178. doi:10.1016/j.chroma.2014.11.023Chen, Y., Wu, J., Xu, Y., Fu, M., & Xiao, G. (2014). Effect of Second Cooling on the Chemical Components of Essential Oils from Orange Peel (Citrus sinensis). Journal of Agricultural and Food Chemistry, 62(35), 8786-8790. doi:10.1021/jf501079rCheong, M. W., Chong, Z. S., Liu, S. Q., Zhou, W., Curran, P., & Bin Yu. (2012). Characterisation of calamansi (Citrus microcarpa). Part I: Volatiles, aromatic profiles and phenolic acids in the peel. Food Chemistry, 134(2), 686-695. doi:10.1016/j.foodchem.2012.02.162Cheong, M.-W., Liu, S.-Q., Yeo, J., Chionh, H.-K., Pramudya, K., Curran, P., & Yu, B. (2011). Identification of Aroma-Active Compounds in Malaysian Pomelo (Citrus grandis(L.) Osbeck) Peel by Gas Chromatography-Olfactometry. Journal of Essential Oil Research, 23(6), 34-42. doi:10.1080/10412905.2011.9712279Cheong, M.-W., Loke, X.-Q., Liu, S.-Q., Pramudya, K., Curran, P., & Yu, B. (2011). Characterization of Volatile Compounds and Aroma Profiles of Malaysian Pomelo (Citrus grandis (L.) Osbeck) Blossom and Peel. Journal of Essential Oil Research, 23(2), 34-44. doi:10.1080/10412905.2011.9700445Chisholm, M. G., Jell, J. A., & Cass, D. M. (2003). Characterization of the major odorants found in the peel oil ofCitrus reticulata Blanco cv. Clementine using gas chromatography-olfactometry. Flavour and Fragrance Journal, 18(4), 275-281. doi:10.1002/ffj.1188Chisholm, M. G., Wilson, M. A., & Gaskey, G. M. (2003). Characterization of aroma volatiles in key lime essential oils (Citrus aurantifolia Swingle). Flavour and Fragrance Journal, 18(2), 106-115. doi:10.1002/ffj.1172Choi, H.-S. (2003). Characterization ofCitrus unshiu(C. unshiuMarcov. formaMiyagawa-wase) Blossom Aroma by Solid-Phase Microextraction in Conjunction with an Electronic Nose. Journal of Agricultural and Food Chemistry, 51(2), 418-423. doi:10.1021/jf0114280Choi, H.-S. (2003). Character Impact Odorants ofCitrusHallabong [(C. unshiuMarcov ×C. sinensisOsbeck) ×C. reticulataBlanco] Cold-Pressed Peel Oil. Journal of Agricultural and Food Chemistry, 51(9), 2687-2692. doi:10.1021/jf021069oChoi, H.-S. (2005). Characteristic Odor Components of Kumquat (Fortunella japonicaSwingle) Peel Oil. Journal of Agricultural and Food Chemistry, 53(5), 1642-1647. doi:10.1021/jf040324xChoi, H.-S. (2006). Lipolytic Effects of Citrus Peel Oils and Their Components. Journal of Agricultural and Food Chemistry, 54(9), 3254-3258. doi:10.1021/jf052409jChoi, H.-S., Kondo, Y., & Sawamura, M. (2001). Characterization of the Odor-Active Volatiles in Citrus Hyuganatsu (Citrus tamuranaHort. ex Tanaka). Journal of Agricultural and Food Chemistry, 49(5), 2404-2408. doi:10.1021/jf001467wChoi, H. S., Sawamura, M., & Kondo, Y. (2002). Characterization of the Key Aroma Compounds of Citrus flaviculpus Hort. ex Tanaka by Aroma Extraction Dilution Analysis. Journal of Food Science, 67(5), 1713-1718. doi:10.1111/j.1365-2621.2002.tb08711.xChung, H., Chung, W.-Y., Yoo, E.-S., Cho, S. K., Oh, S.-K., & Kim, Y.-S. (2012). Characterization of volatile aroma-active compounds in Dangyooja (Citrus grandis Osbeck). Journal of the Korean Society for Applied Biological Chemistry, 55(1), 133-136. doi:10.1007/s13765-012-0023-2Chung, M. S. (2012). Volatile compounds of the Hallabong (Citrus kiyomi × Citrus ponkan) blossom. Food Science and Biotechnology, 21(1), 285-290. doi:10.1007/s10068-012-0038-9Cosimi, S., Rossi, E., Cioni, P. L., & Canale, A. (2009). Bioactivity and qualitative analysis of some essential oils from Mediterranean plants against stored-product pests: Evaluation of repellency against Sitophilus zeamais Motschulsky, Cryptolestes ferrugineus (Stephens) and Tenebrio molitor (L.). Journal of Stored Products Research, 45(2), 125-132. doi:10.1016/j.jspr.2008.10.002Costa, R., Bisignano, C., Filocamo, A., Grasso, E., Occhiuto, F., & Spadaro, F. (2014). Antimicrobial activity and chemical composition ofCitrus aurantifolia(Christm.) Swingle essential oil from Italian organic crops. Journal of Essential Oil Research, 26(6), 400-408. doi:10.1080/10412905.2014.964428Costa, R., Dugo, P., Navarra, M., Raymo, V., Dugo, G., & Mondello, L. (2010). Study on the chemical composition variability of some processed bergamot (Citrus bergamia) essential oils. Flavour and Fragrance Journal, 25(1), 4-12. doi:10.1002/ffj.1949Craske, J. D., Suryadi, N., & Wootton, M. (2005). A comparison of the peel oil components of Australian native lime (Microcitrus australe) and Mexican lime (Citrus aurantifolia Swingle). Journal of the Science of Food and Agriculture, 85(3), 522-525. doi:10.1002/jsfa.2038Behzad, B. D. (2011). Comparison of volatile components of flower, leaf, peel and juice of Page mandarin [(Citrus reticulata var Dancy Citrus paradisi var Duncan) Citrus clementina]. African Journal of Biotechnology, 10(51), 10437-10446. doi:10.5897/ajb11.1069Delort, E., & Jaquier, A. (2009). Novel terpenyl esters from Australian finger lime (Citrus australasica) peel extract. Flavour and Fragrance Journal, 24(3), 123-132. doi:10.1002/ffj.1922Delort, E., Jaquier, A., Decorzant, E., Chapuis, C., Casilli, A., & Frérot, E. (2015). Comparative analysis of three Australian finger lime (Citrus australasica) cultivars: Identification of unique citrus chemotypes and new volatile molecules. Phytochemistry, 109, 111-124. doi:10.1016/j.phytochem.2014.10.023Dharmawan, J., Kasapis, S., Sriramula, P., Lear, M. J., & Curran, P. (2009). Evaluation of Aroma-Active Compounds in Pontianak Orange Peel Oil (Citrus nobilis Lour. Var.microcarpaHassk.) by Gas Chromatography−Olfactometry, Aroma Reconstitution, and Omission Test. Journal of Agricultural and Food Chemistry, 57(1), 239-244. doi:10.1021/jf801070rDong, Z. B., Shao, W. Y., & Liang, Y. R. (2014). Isolation and Characterization of Essential Oil Extracted from Tangerine Peel. Asian Journal of Chemistry, 26(16), 4975-4978. doi:10.14233/ajchem.2014.16277Družić, J., Jerković, I., Marijanović, Z., & Roje, M. (2016). Chemical biodiversity of the leaf and flower essential oils of Citrus aurantium L. from Dubrovnik area (Croatia) in comparison with Citrus sinensis L. Osbeck cv. Washington navel, Citrus sinensis L. Osbeck cv. Tarocco and Citrus sinensis L. Osbeck cv. Doppio Sanguigno. Journal of Essential Oil Research, 28(4), 283-291. doi:10.1080/10412905.2016.1159258Dugo, G., Bonaccorsi, I., Sciarrone, D., Costa, R., Dugo, P., Mondello, L., … Fakhry, H. A. (2011). Characterization of Oils from the Fruits, Leaves and Flowers of the Bitter Orange Tree. Journal of Essential Oil Research, 23(2), 45-59. doi:10.1080/10412905.2011.9700446Dugo, P., Mondello, L., Cogliandro, E., Verzera, A., & Dugo, G. (1996). On the Genuineness of Citrus Essential Oils. 51. Oxygen Heterocyclic Compounds of Bitter Orange Oil (Citrus aurantiumL.). Journal of Agricultural and Food Chemistry, 44(2), 544-549. doi:10.1021/jf950183mDugo, P., Mondello, L., Favoino, O., Cicero, L., Zenteno, N. A. R., & Dugo, G. (2004). Characterization of cold-pressed Mexican dancy tangerine oils. Flavour and Fragrance Journal, 20(1), 60-66. doi:10.1002/ffj.1367Elmaci, Y., & Onoğur, T. (2012). Mandarin peel aroma: Estimation by using headspace/GC/MS and descriptive analysis techniques. Acta Alimentaria, 41(1), 131-139. doi:10.1556/aalim.41.2012.1.15Fancello, F., Petretto, G. L., Zara, S., Sanna, M. L., Addis, R., Maldini, M., … Pintore, G. (2016). Chemical characterization, antioxidant capacity and antimicrobial activity against food related microorganisms of Citrus limon var. pompia leaf essential oil. LWT - Food Science and Technology, 69, 579-585. doi:10.1016/j.lwt.2016.02.018Fanciullino, A.-L., Gancel, A.-L., Froelicher, Y., Luro, F., Ollitrault, P., & Brillouet, J.-M. (2005). Effects of Nucleo-cytoplasmic Interactions on Leaf Volatile Compounds from Citrus Somatic Diploid Hybrids. Journal of Agricultural and Food Chemistry, 53(11), 4517-4523. doi:10.1021/jf0502855Fanciullino, A.-L., Tomi, F., Luro, F., Desjobert, J. M., & Casanova, J. (2006). Chemical variability of peel and leaf oils of mandarins. Flavour and Fragrance Journal, 21(2), 359-367. doi:10.1002/ffj.1658Feger, W., Brandauer, H., & Ziegler, H. (2000). Sesquiterpene hydrocarbons of cold-pressed lime oils. Flavour and Fragrance Journal, 15(4), 281-284. doi:10.1002/1099-1026(200007/08)15:43.0.co;2-wFeger, W., Brandauer, H., & Ziegler, H. (2001). Analytical Investigation of Sweetie Peel Oil. Journal of Essential Oil Research, 13(5), 309-313. doi:10.1080/10412905.2001.9712221Feger, W., Brandauer, H., & Ziegler, H. (2001). Germacrenes in Citrus Peel Oils. Journal of Essential Oil Research, 13(4), 274-277. doi:10.1080/10412905.2001.9699692Ferhat, M. A., Meklati, B. Y., & Chemat, F. (2007). Comparison of different isolation methods of essential oil fromCitrus fruits: cold pressing, hydrodistillation and microwave ‘dry’ distillation. Flavour and Fragrance Journal, 22(6), 494-504. doi:10.1002/ffj.1829Fischer, A., Grab, W., & Schieberle, P. (2007). Characterisation of the most odour-active compounds in a peel oil extract from Pontianak oranges (Citrus nobilis var. Lour. microcarpa Hassk.). European Food Research and Technology, 227(3), 735-744. doi:10.1007/s00217-007-0781-yFlamini, G., & Cioni, P. L. (2010). Odour gradients and patterns in volatile emission of different plant parts and developing fruits of grapefruit (Citrus paradisi L.). Food Chemistry, 120(4), 984-992. doi:10.1016/j.foodchem.2009.11.037Flamini, G., Tebano, M., & Cioni, P. L. (2007). Volatiles emission patterns of different plant organs and pollen of Citrus limon. Analytica Chimica Acta, 589(1), 120-124. doi:10.1016/j.aca.2007.02.053Fouad, H. A., & da Camara, C. A. G. (2017). Chemical composition and bioactivity of peel oils from Citrus aurantiifolia and Citrus reticulata and enantiomers of their major constituent against Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Stored Products Research, 73, 30-36. doi:10.1016/j.jspr.2017.06.001Frizzo, C. D., Lorenzo, D., & Dellacassa, E. (2004). Composition and Seasonal Variation of the Essential Oils from Two Mandarin Cultivars of Southern Brazil. Journal of Agricultural and Food Chemistry, 52(10), 3036-3041. doi:10.1021/jf030685xFurneri, P. M., Mondello, L., Mandalari, G., Paolino, D., Dugo, P., Garozzo, A., & Bisignano, G. (2012). In vitro antimycoplasmal activity of citrus bergamia essential oil and its major components. European Journal of Medicinal Chemistry, 52, 66-69. doi:10.1016/j.ejmech.2012.03.005Gancel, A.-L., Ollé, D., Ollitrault, P., Luro, F., & Brillouet, J.-M. (2002). Leaf and peel volatile compounds of an interspecific citrus somatic hybrid [Citrus aurantifolia(Christm.) Swing. +Citrus paradisiMacfayden]. Flavour and Fragrance Journal, 17(6), 416-424. doi:10.1002/ffj.1119Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., & Brillouet, J.-M. (2003). Leaf Volatile Compounds of Seven Citrus Somatic Tetraploid Hybrids Sharing Willow Leaf Mandarin (Citrus deliciosaTen.) as Their Common Parent. Journal of Agricultural and Food Chemistry, 51(20), 6006-6013. doi:10.1021/jf0345090Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., & Brillouet, J.-M. (2005). Leaf Volatile Compounds of Six Citrus Somatic Allotetraploid Hybrids Originating from Various Combinations of Lime, Lemon, Citron, Sweet Orange, and Grapefruit. Journal of Agricultural and Food Chemistry, 53(6), 2224-2230. doi:10.1021/jf048315bGonzález-Mas, M. C., Rambla, J. L., Alamar, M. C., Gutiérrez, A., & Granell, A. (2011). Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species. PLoS ONE, 6(7), e22016. doi:10.1371/journal.pone.0022016Högnadóttir, Á., & Rouseff, R. L. (2003). Identification of aroma active compounds in orange essence oil using gas chromatography–olfactometry and gas chromatography–mass spectrometry. Journal of Chromatography A, 998(1-2), 201-211. doi:10.1016/s0021-9673(03)00524-7Hosni, K., Zahed, N., Chrif, R., Abid, I., Medfei, W., Kallel, M., … Sebei, H. (2010). Composition of peel essential oils from four selected Tunisian Citrus species: Evidence for the genotypic influence. Food Chemistry, 123(4), 1098-1104. doi:10.1016/j.foodchem.2010.05.068Huang, H.-H., Lin, L.-Y., Chiang, H.-M., Lay, S.-J., Wu, C.-S., & Chen, H.-C. (2017). Analysis of Volatile Compounds from Different Parts ofCitrus grandis(L.) Osbeck Flowers by Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. Journal of Essential Oil Bearing Plants, 20(4), 1057-1065. doi:10.1080/0972060x.2017.1377112Inafuku-Teramoto, S., Suwa, R., Fukuzawa, Y., & Kawamitsu, Y. (2011). Polymethoxyflavones, Synephrine and Volatile Constitution of Peels of Citrus Fruit Grown in Okinawa. Journal of the Japanese Society for Horticultural Science, 80(2), 214-224. doi:10.2503/jjshs1.80.214Jabalpurwala, F. A., Smoot, J. M., & Rouseff, R. L. (2009). A comparison of citrus blossom volatiles. Phytochemistry, 70(11-12),

    Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science

    Get PDF
    It is well documented that the majority of adults, children and families in need of evidence-based behavioral health interventionsi do not receive them [1, 2] and that few robust empirically supported methods for implementing evidence-based practices (EBPs) exist. The Society for Implementation Research Collaboration (SIRC) represents a burgeoning effort to advance the innovation and rigor of implementation research and is uniquely focused on bringing together researchers and stakeholders committed to evaluating the implementation of complex evidence-based behavioral health interventions. Through its diverse activities and membership, SIRC aims to foster the promise of implementation research to better serve the behavioral health needs of the population by identifying rigorous, relevant, and efficient strategies that successfully transfer scientific evidence to clinical knowledge for use in real world settings [3]. SIRC began as a National Institute of Mental Health (NIMH)-funded conference series in 2010 (previously titled the “Seattle Implementation Research Conference”; $150,000 USD for 3 conferences in 2011, 2013, and 2015) with the recognition that there were multiple researchers and stakeholdersi working in parallel on innovative implementation science projects in behavioral health, but that formal channels for communicating and collaborating with one another were relatively unavailable. There was a significant need for a forum within which implementation researchers and stakeholders could learn from one another, refine approaches to science and practice, and develop an implementation research agenda using common measures, methods, and research principles to improve both the frequency and quality with which behavioral health treatment implementation is evaluated. SIRC’s membership growth is a testament to this identified need with more than 1000 members from 2011 to the present.ii SIRC’s primary objectives are to: (1) foster communication and collaboration across diverse groups, including implementation researchers, intermediariesi, as well as community stakeholders (SIRC uses the term “EBP champions” for these groups) – and to do so across multiple career levels (e.g., students, early career faculty, established investigators); and (2) enhance and disseminate rigorous measures and methodologies for implementing EBPs and evaluating EBP implementation efforts. These objectives are well aligned with Glasgow and colleagues’ [4] five core tenets deemed critical for advancing implementation science: collaboration, efficiency and speed, rigor and relevance, improved capacity, and cumulative knowledge. SIRC advances these objectives and tenets through in-person conferences, which bring together multidisciplinary implementation researchers and those implementing evidence-based behavioral health interventions in the community to share their work and create professional connections and collaborations

    Mechanistic and functional insights into the human kinesin motor CENP-E in cell division

    No full text
    During mitosis, chromosomes align at the spindle equator and biorient in order to equally distribute the genome into two daughter cells. A macromolecular protein complex, known as the kinetochore, facilitates the end-on attachment of chromosomes to spindle microtubules. CENP-E is a very large mitotic kinesin motor protein which is recruited to the outer kinetochore and fibrous corona of unattached kinetochores in prometaphase. Human CENP-E motor activity is essential for the alignment of chromosomes close to the spindle poles, but also for the stabilisation of kinetochore-microtubule attachments and microtubule flux in the mitotic spindle. Until now, biochemical characterisation studies and reconstitutions of CENP-E activity have used the Xenopus laevis CENP-E orthologue as a model motor. However, human and X. laevis CENP-E share only 49% sequence similarity and the human model system is typically used for cell biology, functional and structural studies of human kinetochores. The aim of my thesis was to define the mechanistic properties of human CENP-E and define how interactions with associated proteins direct its function in mitosis. First, I reconstituted motor activity of truncated and full-length human CENP-E using reconstitution approaches and single molecule imaging. Truncated CENP-E is constitutively active and processive in vitro, capable of unidirectional movement along microtubules. Active full-length CENP-E molecules are more processive than their truncated CENP-E counterparts in vitro, but exhibit slower average speeds and lower landing rates on microtubules. This work indicates that the non-motor regions of human CENP-E contribute to the regulation of motor activity. CENP-E has been suggested to interact with several distinct binding partners, but it is unclear whether many of these reported interactions are direct. Using biochemistry and isothermal titration calorimetry (ITC), I reconstituted binding between human CENP-E and Protein Phosphatase 1 (PP1). Finally, I studied the role of CENP-E at the spindle midzone. As cells progress into anaphase and the chromosomes segregate to opposite poles, CENP-E is gradually lost from kinetochores and relocalises to the midzone in a PRC1-dependent manner. Thus, I used in vitro reconstitution approaches to gain molecular insights into the function of CENP-E at the overlapping microtubule bundles of the spindle midzone and midbody. I demonstrated that PRC1 is able to recruit CENP-E to overlapping microtubule bundles. PRC1 facilitates microtubule sliding activity of CENP-E in vitro, providing important molecular insight into how CENP-E contributes to microtubule flux and organisation of the spindle midzone in vivo. This study defines the molecular properties of human CENP-E which underpin the essential functions of the motor in chromosome transport, kinetochore-microtubule attachments and mitotic spindle organisation in vivo
    corecore