1,145 research outputs found

    Loop Quantum Gravity

    Get PDF
    The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. The research in loop quantum gravity forms today a vast area, ranging from mathematical foundations to physical applications. Among the most significative results obtained are: (i) The computation of the physical spectra of geometrical quantities such as area and volume; which yields quantitative predictions on Planck-scale physics. (ii) A derivation of the Bekenstein-Hawking black hole entropy formula. (iii) An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, overcompleteness of the loop basis, implementation of reality conditions) have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.Comment: Review paper written for the electronic journal `Living Reviews'. 34 page

    Interferometric Techniques Using Embedded Optical Fibers for the Quantitative NDE of Composites

    Get PDF
    Optical interferometric techniques using single mode optical fiber waveguide embedded in composites and other layered materials have been used to measure one- and two-dimensional stress distributions and acoustic emission caused by applied point source loads. By interferometrically comparing the phases of coherent optical signals propagated through an embedded sample fiber and a bypass reference fiber, a signal proportional to the instantaneous strain integrated along the embedded length of the sample fiber has been detected. System calibration has been obtained by applying a one-dimensional dc strain field to a cantilever beam containing the fiber. Using this calibrated system, an array of fibers attached to a 15cm × 15cm x 0.3cm plate simply supported at the corners and subjected to point loading on the surface has been used to quantitatively determine the two-dimensional dc stress field in the plate. Finally, the calibrated ac response of the interferometer to acoustic emission events in a composite panel has been demonstrated. Potential applications are discussed

    Comparison of serious inhaler technique errors made by device-naïve patients using three different dry powder inhalers: a randomised, crossover, open-label study

    Get PDF
    Background: Serious inhaler technique errors can impair drug delivery to the lungs. This randomised, crossover, open-label study evaluated the proportion of patients making predefined serious errors with Pulmojet compared with Diskus and Turbohaler dry powder inhalers. Methods: Patients ≥18 years old with asthma and/or COPD who were current users of an inhaler but naïve to the study devices were assigned to inhaler technique assessment on Pulmojet and either Diskus or Turbohaler in a randomised order. Patients inhaled through empty devices after reading the patient information leaflet. If serious errors potentially affecting dose delivery were recorded, they repeated the inhalations after watching a training video. Inhaler technique was assessed by a trained nurse observer and an electronic inhalation profile recorder. Results: Baseline patient characteristics were similar between randomisation arms for the Pulmojet-Diskus (n = 277) and Pulmojet-Turbohaler (n = 144) comparisons. Non-inferiority in the proportions of patients recording no nurse-observed serious errors was demonstrated for both Pulmojet versus Diskus, and Pulmojet versus Turbohaler; therefore, superiority was tested. Patients were significantly less likely to make ≥1 nurse-observed serious errors using Pulmojet compared with Diskus (odds ratio, 0.31; 95 % CI, 0.19–0.51) or Pulmojet compared with Turbohaler (0.23; 0.12–0.44) after reading the patient information leaflet with additional video instruction, if required. Conclusions These results suggest Pulmojet is easier to learn to use correctly than the Turbohaler or Diskus for current inhaler users switching to a new dry powder inhaler

    The emergence of international food safety standards and guidelines: understanding the current landscape through a historical approach

    Get PDF
    Following the Second World War, the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) teamed up to construct an International Codex Alimentarius (or 'food code') which emerged in 1963. The Codex Committee on Food Hygiene (CCFH) was charged with the task of developing microbial hygiene standards, although it found itself embroiled in debate with the WHO over the nature these standards should take. The WHO was increasingly relying upon the input of biometricians and especially the International Commission on Microbial Specifications for Foods (ICMSF) which had developed statistical sampling plans for determining the microbial counts in the final end products. The CCFH, however, was initially more focused on a qualitative approach which looked at the entire food production system and developed codes of practice as well as more descriptive end-product specifications which the WHO argued were 'not scientifically correct'. Drawing upon historical archival material (correspondence and reports) from the WHO and FAO, this article examines this debate over microbial hygiene standards and suggests that there are many lessons from history which could shed light upon current debates and efforts in international food safety management systems and approaches

    Laterally Orienting C. elegans Using Geometry at Microscale for High-Throughput Visual Screens in Neurodegeneration and Neuronal Development Studies

    Get PDF
    C. elegans is an excellent model system for studying neuroscience using genetics because of its relatively simple nervous system, sequenced genome, and the availability of a large number of transgenic and mutant strains. Recently, microfluidic devices have been used for high-throughput genetic screens, replacing traditional methods of manually handling C. elegans. However, the orientation of nematodes within microfluidic devices is random and often not conducive to inspection, hindering visual analysis and overall throughput. In addition, while previous studies have utilized methods to bias head and tail orientation, none of the existing techniques allow for orientation along the dorso-ventral body axis. Here, we present the design of a simple and robust method for passively orienting worms into lateral body positions in microfluidic devices to facilitate inspection of morphological features with specific dorso-ventral alignments. Using this technique, we can position animals into lateral orientations with up to 84% efficiency, compared to 21% using existing methods. We isolated six mutants with neuronal development or neurodegenerative defects, showing that our technology can be used for on-chip analysis and high-throughput visual screens

    Imaging of Four Planetary Nebulae in the Magellanic Clouds Using the Hubble Space Telescope Faint Object Camera

    Get PDF
    Using the Faint Object Camera on-board the Hubble Space Telescope, we have obtained images of four planetary nebulae (PNe) in the Magellanic Clouds, namely N2 and N5 in the SMC and N66 and N201 in the LMC. Each nebula was imaged through two narrow-band filters isolating [O III] λ5007 and Hβ, for a nominal exposure time of 1000 s in each filter. Significant detail is evident on the raw images and, after deconvolution using the Richardson-Lucy algorithm, structures as small as 0.06" are easily discernible. In [O III], SMC N5 shows a circular ring structure, with a peak-to-peak diameter of 0.26" and a FWHM of 0.35", while SMC N2 shows an elliptical ring structure with a peak-to-peak diameter of 0.26" x 0.21" (FWHM 0.40" x 0.35"). The expansion ages corresponding to the observed structures in SMC N2 and N5 are of the order of 3000 yr. Such low ages appear more easy to reconcile with helium-burning rather than hydrogen-burning central star evolutionary tracks. LMC N201 is very compact, with a FWHM of 0.21" in Hβ. The Type I PN LMC N66 is a multipolar nebula, with the brightest part having an extent of about 2" and with fainter structures extending over 4". The [O III] image reveals structures unprecedented for a planetary nebula, with several bright knots and faint loops visible outside the two main bright lobes

    Concurrent capecitabine and upper abdominal radiation therapy is well tolerated

    Get PDF
    We retrospectively evaluated acute toxicity in 88 patients that were treated with capecitabine and concurrent radiotherapy to the upper abdomen. These patients included 28 (32%) with pancreatic adenocarcinoma, 18 (20%) with cholangiocarcinoma, 11 (13%) with ampullary carcinoma, 11 (13%) with other primary tumors, 14 (16%) with liver metastases, and 6 (7%) with metastases at other sites. The median dose of radiotherapy was 45 Gy (range 30–72 Gy). The median dose of capecitabine was 850 mg/m(2 )twice daily, with 77% receiving 800–900 mg/m(2 )twice daily. The highest grade of acute toxicity was Common Terminology Criteria (CTC) grade 0 in 5 (6%), grade 1 in 60 (68%), grade 2 in 18 (20%), and grade 3 in 5 (6%) patients. No patient had CTC grade 4 toxicity. The most common grade 2 toxicities were nausea, hand-foot syndrome, fatigue, anorexia and diarrhea. The grade 3 toxicities included nausea, vomiting and fatigue. Three patients (3%) required hospitalization due to grade 3 acute toxicity. Capecitabine was interrupted, discontinued or given at an adjusted dose in 13 (15%) patients because of acute toxicity. Therefore, capecitabine and concurrent radiotherapy to the upper abdomen appears to be well tolerated. Capecitabine may serve as an alternative to bolus or infusional 5-FU during chemoradiation for upper gastrointestinal malignancies

    Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells

    Get PDF
    Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral blood mononuclear cells (PB-MNCs) of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.info:eu-repo/semantics/publishedVersio
    corecore