46 research outputs found

    The Role of Human-Automation Consensus in Multiple Unmanned Vehicle Scheduling

    Get PDF
    Objective: This study examined the impact of increasing automation replanning rates on operator performance and workload when supervising a decentralized network of heterogeneous unmanned vehicles. Background: Futuristic unmanned vehicles systems will invert the operator-to-vehicle ratio so that one operator can control multiple dissimilar vehicles connected through a decentralized network. Significant human-automation collaboration will be needed because of automation brittleness, but such collaboration could cause high workload. Method: Three increasing levels of replanning were tested on an existing multiple unmanned vehicle simulation environment that leverages decentralized algorithms for vehicle routing and task allocation in conjunction with human supervision. Results: Rapid replanning can cause high operator workload, ultimately resulting in poorer overall system performance. Poor performance was associated with a lack of operator consensus for when to accept the automation’s suggested prompts for new plan consideration as well as negative attitudes toward unmanned aerial vehicles in general. Participants with video game experience tended to collaborate more with the automation, which resulted in better performance. Conclusion: In decentralized unmanned vehicle networks, operators who ignore the automation’s requests for new plan consideration and impose rapid replans both increase their own workload and reduce the ability of the vehicle network to operate at its maximum capacity. Application: These findings have implications for personnel selection and training for futuristic systems involving human collaboration with decentralized algorithms embedded in networks of autonomous systems.Aurora Flight Sciences Corp.United States. Office of Naval Researc

    Electronic structure of nuclear-spin-polarization-induced quantum dots

    Get PDF
    We study a system in which electrons in a two-dimensional electron gas are confined by a nonhomogeneous nuclear spin polarization. The system consists of a heterostructure that has non-zero nuclei spins. We show that in this system electrons can be confined into a dot region through a local nuclear spin polarization. The nuclear-spin-polarization-induced quantum dot has interesting properties indicating that electron energy levels are time-dependent because of the nuclear spin relaxation and diffusion processes. Electron confining potential is a solution of diffusion equation with relaxation. Experimental investigations of the time-dependence of electron energy levels will result in more information about nuclear spin interactions in solids

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Asymptotic stability of solitary waves

    Full text link
    We show that the family of solitary waves (1-solitons) of the Korteweg-de Vries equation is asymptotically stable. Our methods also apply for the solitary waves of a class of generalized Korteweg-de Vries equations, In particular, we study the case where f(u)=u p+1 / (p+1) , p =1, 2, 3 (and 30, with f ∈ C 4 ). The same asymptotic stability result for KdV is also proved for the case p =2 (the modified Korteweg-de Vries equation). We also prove asymptotic stability for the family of solitary waves for all but a finite number of values of p between 3 and 4. (The solitary waves are known to undergo a transition from stability to instability as the parameter p increases beyond the critical value p =4.) The solution is decomposed into a modulating solitary wave, with time-varying speed c(t) and phase γ( t ) ( bound state part ), and an infinite dimensional perturbation ( radiating part ). The perturbation is shown to decay exponentially in time, in a local sense relative to a frame moving with the solitary wave. As p →4 − , the local decay or radiation rate decreases due to the presence of a resonance pole associated with the linearized evolution equation for solitary wave perturbations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46489/1/220_2005_Article_BF02101705.pd

    Red swamp crayfish: biology, ecology and invasion - an overview

    Full text link
    corecore