9,714 research outputs found
Do mixtures of bosonic and fermionic atoms adiabatically heat up in optical lattices?
Mixtures of bosonic and fermionic atoms in optical lattices provide a
promising arena to study strongly correlated systems. In experiments realizing
such mixtures in the quantum degenerate regime the temperature is a key
parameter. In this work, we investigate the intrinsic heating and cooling
effects due to an entropy-preserving raising of the optical lattice potential.
We analyze this process, identify the generic behavior valid for a wide range
of parameters, and discuss it quantitatively for the recent experiments with
87Rb and 40K atoms. In the absence of a lattice, we treat the bosons in the
Hartree-Fock-Bogoliubov-Popov-approximation, including the fermions in a
self-consistent mean field interaction. In the presence of the full
three-dimensional lattice, we use a strong coupling expansion. As a result of
the presence of the fermions, the temperature of the mixture after the lattice
ramp-up is always higher than for the pure bosonic case. This sheds light onto
a key point in the analysis of recent experiments.Comment: 5 pages, 3 figure
Handbook for estimating toxic fuel hazards
Computer program predicts, from readily available meteorological data, concentration and dosage fields downwind from ground-level and elevated sources of toxic fuel emissions. Mathematical model is applicable to hot plume rise from industrial stacks and should also be of interest to air pollution meteorologists
Actin at cell-cell junctions is composed of two dynamic and functional populations
The ability of epithelial cells to polarize requires cell-cell adhesion mediated by cadherin receptors. During cell-cell contact, the mechanism via which a flat, spread cell shape is changed into a tall, cuboidal epithelial morphology is not known. We found that cadherin-dependent adhesion modulates actin dynamics by triggering changes in actin organization both locally at junctions and within the rest of the cell. Upon induction of cell-cell contacts, two spatial actin populations are distinguishable: junctional actin and peripheral thin bundles. With time, the relative position of these two populations changes and becomes indistinguishable to form a cortical actin ring that is characteristic of mature, fully polarized epithelial cells. Junctional actin and thin actin bundles differ in their actin dynamics and mechanism of formation, and interestingly, have distinct roles during epithelial polarization. Whereas junctional actin stabilizes clustered cadherin receptors at cell-cell contacts, contraction of peripheral actin bundle is essential for an increase in the maximum height at the lateral domain during polarization (cuboidal morphology). Thus, both junctional actin and thin bundles are necessary, and cooperate with each other to generate a polarized epithelial morphology
Ubic: Bridging the gap between digital cryptography and the physical world
Advances in computing technology increasingly blur the boundary between the
digital domain and the physical world. Although the research community has
developed a large number of cryptographic primitives and has demonstrated their
usability in all-digital communication, many of them have not yet made their
way into the real world due to usability aspects. We aim to make another step
towards a tighter integration of digital cryptography into real world
interactions. We describe Ubic, a framework that allows users to bridge the gap
between digital cryptography and the physical world. Ubic relies on
head-mounted displays, like Google Glass, resource-friendly computer vision
techniques as well as mathematically sound cryptographic primitives to provide
users with better security and privacy guarantees. The framework covers key
cryptographic primitives, such as secure identification, document verification
using a novel secure physical document format, as well as content hiding. To
make a contribution of practical value, we focused on making Ubic as simple,
easily deployable, and user friendly as possible.Comment: In ESORICS 2014, volume 8712 of Lecture Notes in Computer Science,
pp. 56-75, Wroclaw, Poland, September 7-11, 2014. Springer, Berlin, German
Parametric instabilities in magnetized multicomponent plasmas
This paper investigates the excitation of various natural modes in a
magnetized bi-ion or dusty plasma. The excitation is provided by parametrically
pumping the magnetic field. Here two ion-like species are allowed to be fully
mobile. This generalizes our previous work where the second heavy species was
taken to be stationary. Their collection of charge from the background neutral
plasma modifies the dispersion properties of the pump and excited waves. The
introduction of an extra mobile species adds extra modes to both these types of
waves. We firstly investigate the pump wave in detail, in the case where the
background magnetic field is perpendicular to the direction of propagation of
the pump wave. Then we derive the dispersion equation relating the pump to the
excited wave for modes propagating parallel to the background magnetic field.
It is found that there are a total of twelve resonant interactions allowed,
whose various growth rates are calculated and discussed.Comment: Published in May 2004; this is a late submission to the archive. 14
pages, 8 figure
Quantum protocols for anonymous voting and surveying
We describe quantum protocols for voting and surveying. A key feature of our
schemes is the use of entangled states to ensure that the votes are anonymous
and to allow the votes to be tallied. The entanglement is distributed over
separated sites; the physical inaccessibility of any one site is sufficient to
guarantee the anonymity of the votes. The security of these protocols with
respect to various kinds of attack is discussed. We also discuss classical
schemes and show that our quantum voting protocol represents a N-fold reduction
in computational complexity, where N is the number of voters.Comment: 8 pages. V2 includes the modifications made for the published versio
Joint density-functional theory for electronic structure of solvated systems
We introduce a new form of density functional theory for the {\em ab initio}
description of electronic systems in contact with a molecular liquid
environment. This theory rigorously joins an electron density-functional for
the electrons of a solute with a classical density-functional theory for the
liquid into a single variational principle for the free energy of the combined
system. A simple approximate functional predicts, without any fitting of
parameters to solvation data, solvation energies as well as state-of-the-art
quantum-chemical cavity approaches, which require such fitting.Comment: Fixed typos and minor updates to tex
A review of explicit and implicit assumptions when providing personalized feedback based on self-report EMA data
Ecological Momentary Assessment (EMA) in which participants report on their moment-to-moment experiences in their natural environment, is a hot topic. An emerging field in clinical psychology based on either EMA, or what we term Ecological Retrospective Assessment (ERA) as it requires retrospectivity, is the field of personalized feedback. In this field, EMA/ERA-data-driven summaries are presented to participants with the goal of promoting their insight in their experiences. Underlying this procedure are some fundamental assumptions about (i) the relation between true moment-to-moment experiences and retrospective evaluations of those experiences, (ii) the translation of these experiences and evaluations to different types of data, (iii) the comparison of these different types of data, and (iv) the impact of a summary of moment-to-moment experiences on retrospective evaluations of those experiences. We argue that these assumptions deserve further exploration, in order to create a strong evidence-based foundation for the personalized feedback procedure
Wormholes, Gamma Ray Bursts and the Amount of Negative Mass in the Universe
In this essay, we assume that negative mass objects can exist in the
extragalactic space and analyze the consequences of their microlensing on light
from distant Active Galactic Nuclei. We find that such events have very similar
features to some observed Gamma Ray Bursts and use recent satellite data to set
an upper bound to the amount of negative mass in the universe.Comment: Essay awarded ``Honorable Mention'' in the Gravity Foundation
Research Awards, 199
- …