87 research outputs found
Sprinkler Application of SO2 - Treated Groundwater at the Sandarosa Farm, Snowville, Utah
Sulfur is recognized as one of the essential elements for plant growth. It has also been used in agriculture for reclamation of saline and sodic soils. During the reclamation process there is the potential benefit of increased availability of phosphorus and certain micro-nutrients for plant uptake. There is also potential for increased infiltration thus increasing water utilization efficiency.
Sulfur has been applied to soils in a flake or nodule form, by the addition of sulfuric acid and most recently by the application of sulfurous acid. The raw sulfur addition technique is accomplished by spreading raw sulfur on the soil and under the appropriate temperature, soil moisture, pH and aerobic conditions, microorganisms oxidize the sulfur to sulfate. This process is rather slow except under some very limited optimal conditions. Sulfuric acid has been used under a variety of conditions but seems to be limited due to its hazardous nature and corrosive properties. The sulfurous acid technique seems to have the most promising future as the best and most appropriate technique of sulfur addition. Raw sulfur is burned on site and administered into the irrigation water as needed according to the soil, water and crop conditions.
This project was initiated to evaluate the application and beneficial effects of sulfurous acid (using an International Environmental Inc. Model 150 sulfur burner) to an alkaline soil using barley as the test crop
Recommended from our members
Field-Scale Evaluation of Biological Uranium Reduction and Reoxidation in the Near-Source Zone at the NABIR Field Research Center in Oak Ridge, TN
We have now added ethanol intermittently for over 700 days. Ethanol has been added weekly with each injection lasting for a few days. We are now observing: (1) Uranium immobilization at 700-2000 mg/kg. Baseline levels before remediation were 30-500 mg/kg. (2) Uranium concentrations in groundwater at the monitoring wells have fallen below the U.S. drinking water standard (30 ppb). This is an important milestone. (3) XANES analyses for day 535 indicate 51% U(IV) at the inner loop injection well, 35% U(IV) at MLS well 101-2, and 28% U(IV) at the extraction well. These numbers indicate that U(IV) reduction is not localized to the injection well, and is spreading through the aquifer. (4) We have had success removing trace levels of oxygen from recirculated water by addition of sulfite and related compounds. These compounds also provide the added benefit that in removing oxygen that themselves are oxidized to sulfate, an important electron acceptor needed for maintenance of our system
Recommended from our members
Field-Scale Evaluation of Biostimulation for Remediation of Uranium-Contaminated Groundwater at a Proposed NABIR Field Research Center in Oak Ridge, TN
A hydrologic, geochemical and microbial characterization of the Area 3 field site has been completed. The formation is fairly impermeable, but there is a region of adequate flow approximately 50 feet bgs. The experiment will be undertaken within that depth interval. Groundwater from that depth is highly acidic (pH 3.2), and has high levels of nitrate, aluminum, uranium, and other heavy metals, as well as volatile chlorinated solvents (VOCs). Accordingly, an aboveground treatment train has been designed to remove these contaminants. The train consists of a vacuum stripper to remove VOCs, two chemical precipitation steps to adjust pH and remove metals, and a fluidized bed bioreactor to remove nitrate. The aboveground system will be coupled to a belowground recirculation system. The belowground system will contain an outer recirculation cell and a nested inner recirculation cell: the outer cells will be continuously flushed with nitrate-free treated groundwater. The inner cell will receive periodic inputs of uranium, tracer, and electron donor. Removal of uranium will be determined by comparing loss rates of conservative tracer and uranium within the inner recirculation cell. Over the past year, a detailed workplan was developed and submitted for regulatory approval. The workplan was presented to the Field Research Advisory Panel (FRAP), and after some extensive revision, the FRAP authorized implementation. Detailed design drawings and numerical simulations of proposed experiments have been prepared. System components are being prefabricated as skid-mounted units in Michigan and will be shipped to Oak Ridge for assembly. One manuscript has been submitted to a peer reviewed journal. This paper describes a novel technique for inferring subsurface hydraulic conductivity values. Two posters on this project were presented at the March 2002 NABIR PI meeting. One poster was presented at the Annual conference of the American Society for Microbiology in Salt Lake City, UT in May 2002
Addressing the Issue of Microplastics in the Wake of the Microbead-Free Waters Act - A New Standard Can Facilitate Improved Policy
The United States Microbead-Free Waters Act was signed into law in December 2015. It is a bipartisan agreement that will eliminate one preventable source of microplastic pollution in the United States. Still, the bill is criticized for being too limited in scope, and also for discouraging the development of biodegradable alternatives that ultimately are needed to solve the bigger issue of plastics in the environment. Due to a lack of an acknowledged, appropriate standard for environmentally safe microplastics, the bill banned all plastic microbeads in selected cosmetic products. Here, we review the history of the legislation and how it relates to the issue of microplastic pollution in general, and we suggest a framework for a standard (which we call “Ecocyclable”) that includes relative requirements related to toxicity, bioaccumulation, and degradation/assimilation into the natural carbon cycle. We suggest that such a standard will facilitate future regulation and legislation to reduce pollution while also encouraging innovation of sustainable technologies
Optimizing Nitrogen Fixation and Recycling for Food Production in Regenerative Life Support Systems
Nitrogen (N) recycling is essential for efficient food production in regenerative life support systems. Crew members with a high workload need 90–100 g of protein per person per day, which is about 14 g of N, or 1 mole of N, per person per day. Most of this N is excreted through urine with 85% as urea. Plants take up N predominantly as nitrate and ammonium, but direct uptake as urea is possible in small amounts. Efficient N recycling requires maintenance of pH of waste streams below about 7 to minimize the volatilization of N to ammonia. In aerobic reactors, continuous aerobic conditions are needed to minimize production and volatilization of nitrous oxide. N is not well recycled on Earth. The energy intensive Haber–Bosh process supplies most of the N for crop production in terrestrial agriculture. Bacterial fixation of dinitrogen to ammonium is also energy intensive. Recycling of N from plant and human waste streams is necessary to minimize the need for N fixation. Here we review approaches and potential for N fixation and recycling in regenerative life support systems. Initial estimates indicate that nearly all the N from human and plant waste streams can be recovered in forms usable for plants
Recommended from our members
Field-scale evaluation of biological uranium reduction and reoxidation in the near-source zone at the NABIR Field Research Center in Oak Ridge, TN
The primary objective of the project is to advance the understanding and predictive capability of coupled hydrological, geochemical, and microbiological processes that control the in situ transport and bioremediation radionuclides and co-contaminants at multiple scales. Specific objectives include: (1) Investigate the feasibility of in situ bioremediation of uranium in a highly contaminated region within the subsurface of Area 3 of the DoE ERSP FRC (2) Using a variety of tracer strategies, develop and model a system that establishes hydraulic control of the target region for biostimulation (3) Perform long term in situ biostimulation studies that create a microbial communities capable of reducing residual nitrate to N2 and mobile U(VI) to sparingly soluble U(IV) (4) Use a variety of solid and solution phase interrogation techniques to quantify the extent of in situ reduction and immobilization of U(VI). (5) Investigate a variety of geochemical factors that influence the stability and possible reoxidation of reduced uranium
Recommended from our members
High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater.
Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing δ-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction
Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths
Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction, and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5 y period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate, and ethanol strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate-reducers and metal-reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared to the population variation via canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bio-reduction; however, the two bio-stimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology
Global diversity and biogeography of bacterial communities in wastewater treatment plants
Microorganisms in wastewater treatment plants (WWTPs) are essential for water purification to protect public and environmental health. However, the diversity of microorganisms and the factors that control it are poorly understood. Using a systematic global-sampling effort, we analysed the 16S ribosomal RNA gene sequences from ~1,200 activated sludge samples taken from 269 WWTPs in 23 countries on 6 continents. Our analyses revealed that the global activated sludge bacterial communities contain ~1 billion bacterial phylotypes with a Poisson lognormal diversity distribution. Despite this high diversity, activated sludge has a small, global core bacterial community (n = 28 operational taxonomic units) that is strongly linked to activated sludge performance. Meta-analyses with global datasets associate the activated sludge microbiomes most closely to freshwater populations. In contrast to macroorganism diversity, activated sludge bacterial communities show no latitudinal gradient. Furthermore, their spatial turnover is scale-dependent and appears to be largely driven by stochastic processes (dispersal and drift), although deterministic factors (temperature and organic input) are also important. Our findings enhance our mechanistic understanding of the global diversity and biogeography of activated sludge bacterial communities within a theoretical ecology framework and have important implications for microbial ecology and wastewater treatment processes
- …