7,701 research outputs found

    Coarse-grained interaction potentials for polyaromatic hydrocarbons

    Get PDF
    Using Kohn-Sham density functional theory (KS-DFT), we have studied the interaction between various polyaromatic hydrocarbon molecules. The systems range from mono-cyclic benzene up to hexabenzocoronene (hbc). For several conventional exchange-correlation functionals potential energy curves of interaction of the π\pi-π\pi stacking hbc dimer are reported. It is found that all pure local density or generalized gradient approximated functionals yield qualitatively incorrect predictions regarding structure and interaction. Inclusion of a non-local, atom-centered correction to the KS-Hamiltonian enables quantitative predictions. The computed potential energy surfaces of interaction yield parameters for a coarse-grained potential, which can be employed to study discotic liquid-crystalline mesophases of derived polyaromatic macromolecules

    The X-ray Properties of Five Galactic Supernova Remnants Detected by the Spitzer GLIMPSE Survey

    Full text link
    (Abbreviated) We present a study of the X-ray properties of five Galactic supernova remnants (SNRs) -- Kes 17 (G304.6++0.1), G311.5−-0.3, G346.6−-0.2, CTB 37A (G348.5++0.1) and G348.5−-0.0 -- that were detected in the infrared by Reach et al. (2006) in an analysis of data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) that was conducted by the Spitzer Space Telescope. We present and analyze archival ASCA observations of Kes 17, G311.5−-0.3 and G346.6−-0.2, archival XMM-Newton observations of Kes 17, CTB 37A and G348.5−-0.0 and an archival Chandra observation of CTB 37A. All of the SNRs are clearly detected in the X-ray possibly except for G348.5−-0.0. Our study reveals that the four detected SNRs all feature center-filled X-ray morphologies and that the observed emission from these sources is thermal in all cases. We argue that these SNRs should be classified as mixed-morphology SNRs (MM SNRs): our study strengthens the correlation between MM SNRs and SNRs interacting with molecular clouds and suggests that the origin of mixed-morphology SNRs may be due to the interactions between these SNRs and adjacent clouds. Our ASCA analysis of G311.5−-0.3 reveals for the first time X-ray emission from this SNR: the X-ray emission is center-filled within the radio and infrared shells and thermal in nature (kTkT ∼\sim 0.98 keV), thus motivating its classification as an MM SNR. We find considerable spectral variations in the properties associated with the plasmas of the other X-ray-detected SNRs, such as a possible overabundance of magnesium in the plasma of Kes 17. Finally, we also estimate such properties as electron density nne_e, radiative age ttrad_{rad} and swept-up mass MMX_X for each of the four X-ray-detected SNRs.Comment: 78 pages, 26 figures, Astronomical Journal, in pres

    Immunization against experimental rabbit cysticercosis using liposome-associated antigen preparations

    Get PDF
    Rabbits were vaccinated once, by subcutaneous and intradermal injection, with sonicates of oncospheres (TpO) or conditioned media from in vitro maintained mature metacestodes (TpMcES) of Taenia pisiformis. Extracts were either incorporated into or mixed with unilammelar liposomes (reverse phase evaporative vesicles) or emulsified in Freund's Incomplete Adjuvant (FIA). Control groups received liposomes or FIA without antigen, or antigen preparation without adjuvant. Rabbits were challenged orally two weeks after vaccination with approximately 1500 eggs of T. pisiformis and necropsied eight weeks after challenge. A mean of 155 cysts was recovered from seven control rabbits. A 67% reduction in peritoneal cyst numbers was obtained in TpO-IFA vaccinated rabbits compared to 75% for the TpO-liposome entrapped group. The highest level of protection (86%) was obtained when TpO was mixed with but not entrapped in liposomes. Only 32% and 39% reduction in peritoneal cyst numbers was obtained after immunizing with the TpMcES preparation in liposomes or IFA respectively, however >85% of peritoneal metacestodes were dead (necrotic or calcified) and suggests a different immune response than occurs after vaccination with oncosphere extracts. Specific anti-oncospheral or anti-metacestode ES antibody (IgG) responses at two weeks post vaccination were similar in rabbits immunized with liposome or IFA associated extract

    On the interactions between molecules in an off-resonant laser beam:Evaluating the response to energy migration and optically induced pair forces

    Get PDF
    Electronically excited molecules interact with their neighbors differently from their ground-state counterparts. Any migration of the excitation between molecules can modify intermolecular forces, reflecting changes to a local potential energy landscape. It emerges that throughput off-resonant radiation can also produce significant additional effects. The context for the present analysis of the mechanisms is a range of chemical and physical processes that fundamentally depend on intermolecular interactions resulting from second and fourth-order electric-dipole couplings. The most familiar are static dipole-dipole interactions, resonance energy transfer (both second-order interactions), and dispersion forces (fourth order). For neighboring molecules subjected to off-resonant light, additional forms of intermolecular interaction arise in the fourth order, including radiation-induced energy transfer and optical binding. Here, in a quantum electrodynamical formulation, these phenomena are cast in a unified description that establishes their inter-relationship and connectivity at a fundamental level. Theory is then developed for systems in which the interplay of these forms of interaction can be readily identified and analyzed in terms of dynamical behavior. The results are potentially significant in Förster measurements of conformational change and in the operation of microelectromechanical and nanoelectromechanical devices. © 2009 American Institute of Physics

    Cooling of the Cassiopeia A neutron star and the effect of diffusive nuclear burning

    Full text link
    The study of how neutron stars cool over time can provide invaluable insights into fundamental physics such as the nuclear equation of state and superconductivity and superfluidity. A critical relation in neutron star cooling is the one between observed surface temperature and interior temperature. This relation is determined by the composition of the neutron star envelope and can be influenced by the process of diffusive nuclear burning (DNB). We calculate models of envelopes that include DNB and find that DNB can lead to a rapidly changing envelope composition which can be relevant for understanding the long-term cooling behavior of neutron stars. We also report on analysis of the latest temperature measurements of the young neutron star in the Cassiopeia A supernova remnant. The 13 Chandra observations over 18 years show that the neutron star's temperature is decreasing at a rate of 2-3 percent per decade, and this rapid cooling can be explained by the presence of a proton superconductor and neutron superfluid in the core of the star.Comment: 7 pages, 7 figures; to appear in the AIP Conference Proceedings of the Xiamen-CUSTIPEN Workshop on the EOS of Dense Neutron-Rich Matter in the Era of Gravitational Wave Astronomy (January 3-7, 2019, Xiamen, China

    The impact of economic information on medical decision making in primary care

    Get PDF
    Background: Many general practitioners (GPs) are concerned about the increasing dominance of economic issues in major decisions about clinical care, and feel their opinions on economic matters have not been heard. It is unclear whether this information has any impact on everyday clinical practice in a primary care setting. Aim: To investigate GPs' perspectives on the use of economic information in medical decision making. Design of study: Cross-sectional survey. Setting: GP members of the West of Scotland Primary Care Research and Development Network (WestNet). Methods: Questionnaire survey sent to GPs by post and by email. Results: The overall response rate was 44%, favouring postal over email responses. All respondents indicated that economic information has previously influenced them and should be incorporated into their medical decision making. The most common source of this information was generated by local authorities such as health boards, primary care groups and local prescribing advisors – used by 80% of the respondents. However, publications, such as the <i>British Journal of General Practice</i>, locally produced newsletters and prescribing formularies, and feedback from the General Practice Administration System for Scotland, were used as sources of economic information by 20%, 27% and 33%, respectively. Published materials – in particular, locally specific information and summarized information in leaflet format – were favoured (54%) in comparison to verbally presented material. Conclusions: GPs believe that economic information should be incorporated in medical decision making. The need for precise and summarized information, produced locally, has been highlighted. Better understanding towards the type of economic evidence GPs find useful and comprehensible is required

    Chandra observations of the accretion-driven millisecond X-ray pulsars XTE J0929-314 and XTE J1751-305 in quiescence

    Full text link
    (Abridge) We observed the accreting millisecond X-ray pulsars XTE J0929-314 and XTE J1751-305 in their quiescent states using Chandra. From XTE J0929-314 we detected 22 photons (0.3-8 keV) in 24.4 ksec, resulting in a count rate of 9 x 10^{-4} c/s. The small number of photons detected did not allow for a detailed spectral analysis, but we can demonstrate that the spectrum is harder than simple thermal emission which is what is usually presumed to arise from a cooling neutron star that has been heated during the outbursts. Assuming a power-law model for the spectrum, we obtain a power-law index of ~1.8 and an unabsorbed flux of 6 x 10^{-15} ergs/s/cm^2 (0.5-10 keV), resulting in a luminosity of 7 x 10^{31} (d/10 kpc)^2 ergs/s, with d in kpc. No thermal component could be detected; such a component contributed at most 30% to the 0.5-10 keV flux. Variability in the count rate of XTE J0929-314 was observed at the 95% confidence level. We did not conclusively detect XTE J1751-305 in our 43 ksec observation, with 0.5-10 keV flux upper limits between 0.2 and 2.7 x 10^{-14} ergs/s/cm^2 depending on assumed spectral shape, resulting in luminosity upper limits of 0.2 - 2 x 10^{32} (d/8 kpc)^2 ergs/s. We compare our results with those obtained for other neutron-star X-ray transients in their quiescent state. Using simple accretion disk physics in combination with our measured quiescent luminosity of XTE J0929-314 and the luminosity upper limits of XTE J1751-305, and the known spin frequency of the neutron stars, we could constrain the magnetic field of the neutron stars in XTE J0929-314 and XTE J1751-305 to be less than 3 x 10^9 (d/10 kpc) and 3 - 7 x 10^8 (d/8 kpc) Gauss (depending on assumed spectral shape of the quiescent spectrum), respectively.Comment: Accepted for publication in ApJ, 29 September 2004. Added spectral variability search for the data of XTE J0929-314 and added the non-detection with Chandra of XTE J1751-30

    Evolution of displacements and strains in sheared amorphous solids

    Full text link
    The local deformation of two-dimensional Lennard-Jones glasses under imposed shear strain is studied via computer simulations. Both the mean squared displacement and mean squared strain rise linearly with the length of the strain interval Δγ\Delta \gamma over which they are measured. However, the increase in displacement does not represent single-particle diffusion. There are long-range spatial correlations in displacement associated with slip lines with an amplitude of order the particle size. Strong dependence on system size is also observed. The probability distributions of displacement and strain are very different. For small Δγ\Delta \gamma the distribution of displacement has a plateau followed by an exponential tail. The distribution becomes Gaussian as Δγ\Delta \gamma increases to about .03. The strain distributions consist of sharp central peaks associated with elastic regions, and long exponential tails associated with plastic regions. The latter persist to the largest Δγ\Delta \gamma studied.Comment: Submitted to J. Phys. Cond. Mat. special volume for PITP Conference on Mechanical Behavior of Glassy Materials. 16 Pages, 8 figure

    Nonradiative interaction and entanglement between distant atoms

    Full text link
    We show that nonradiative interactions between atomic dipoles placed in a waveguide can give rise to deterministic entanglement at ranges much larger than their resonant wavelength. The range increases as the dipole-resonance approaches the waveguide's cutoff frequency, caused by the giant density of photon modes near cutoff, a regime where the standard (perturbative) Markov approximation fails. We provide analytical theories for both the Markovian and non-Markovian regimes, supported by numerical simulations, and discuss possible experimental realizations.Comment: 9 pages, 2 figure
    • …
    corecore