9 research outputs found

    Successful immunization of naturally reared pigs against porcine cysticercosis with a recombinant oncosphere antigen vaccine

    No full text
    a b s t r a c t Taenia solium causes cysticercosis in pigs and taeniasis and neurocysticercosis in humans. Oncosphere antigens have proven to be effective as vaccines to protect pigs against an experimental infection with T. solium. A pair-matched vaccination trial field, using a combination of two recombinant antigens, TSOL16 and TSOL18, was undertaken in rural villages of Peru to evaluate the efficacy of this vaccine under natural conditions. Pairs of pigs (n = 137) comprising one vaccinated and one control animal, were allocated to local villagers. Animals received two vaccinations with 200 g of each of TSOL16 and TSOL18, plus 5 mg Quil-A. Necropsies were performed 7 months after the animals were distributed to the farmers. Vaccination reduced 99.7% and 99.9% (p < 0.01) the total number of cysts and the number of viable cysts, respectively. Immunization with the TSOL16-TSOL18 vaccines has the potential to control T. solium transmission in areas where the disease is endemic, reducing the source for tapeworm infections in humans

    Localisation of three host-protective oncospheral antigens of Taenia ovis

    No full text
    Immunohistochemistry, confocal immunofluorescence and immunogold labelling were used to determine the localisation of the host-protective antigens To16, To18 and To45W in Taenia ovis oncospheres. During maturation of the adult tapeworm the antigens were initially seen as diffuse staining in the developing oncospheres but in mature oncospheres four distinct cells stained positively for the antigens. Confocal fluorescence microscopy using different fluorophores revealed that each of the antigens co-localises within the same cells in the oncosphere. No surface localisation was seen in non-activated or recently activated parasites. Immunogold labelling of non-activated oncosphere sections viewed in transmission electron microscopy revealed labelling of bilateral cells, however the identities of these cells was unclear due to deficiencies in the current level of understanding of oncosphere ultrastructure. Localisation of all the antigens changed dramatically after oncospheres were activated in vitro with each of the antigens being dispersed more generally throughout the parasite parenchyma. During development of the parasites in in vitro culture, surface localisation of the proteins was seen in parasites after 3 or more days in culture. All three antigens were found to be completely absent in parasites by 15 days of culture. The location of the host-protective antigens suggests that initially the invading oncospheres are not susceptible to vaccine-induced antibody and complement mediated attack, but that as the parasites mature, the host-protective antigens come to be associated with the parasite’s surface, rendering them susceptible to immune attack

    Elimination of Taenia solium transmission to pigs in a field trial of the TSOL18 vaccine in Cameroon

    No full text
    A pilot field trial of the TSOL18 vaccine was undertaken in Cameroon. Two hundred and forty, 2–3 month-old piglets were distributed to 114 individual households in pairs. Vaccinated animals received three immunisations with 200 μg TSOL18 plus 5 mg Quil A and 30 mg/kg oxfendazole at the time of the second immunisation. Necropsies were undertaken when the pigs were approximately 12 months of age. Viable Taenia solium cysticerci were identified in 20 control pigs (prevalence 19.6%); no cysticerci were found in any of the vaccinated animals (P < 0.0001). Combined application of TSOL18 vaccination and a single oxfendazole treatment in pigs may be a relatively simple and sustainable procedure that has the potential to control T. solium transmission in endemic areas and, indirectly, reduce the number of new cases of neurocysticercosis in humans

    Induction of Protection against Porcine Cysticercosis by Vaccination with Recombinant Oncosphere Antigens

    No full text
    Two recombinant Taenia solium oncosphere antigens, designated TSOL18 and TSOL45-1A, were investigated as vaccines to prevent transmission of the zoonotic disease cysticercosis through pigs. Both antigens were effective in inducing very high levels of protection (up to 100%) in three independent vaccine trials in pigs against experimental challenge infection with T. solium eggs, which were undertaken in Mexico and Cameroon. This is the highest level of protection that has been achieved against T. solium infection in pigs by vaccination with a defined antigen. TSOL18 and TSOL45-1A provide the basis for development of a highly effective practical vaccine that could assist in the control and, potentially, the eradication of human neurocysticercosis

    Successful immunization of naturally reared pigs against porcine cysticercosis with a recombinant oncosphere antigen vaccine

    Get PDF
    AbstractTaenia solium causes cysticercosis in pigs and taeniasis and neurocysticercosis in humans. Oncosphere antigens have proven to be effective as vaccines to protect pigs against an experimental infection with T. solium. A pair-matched vaccination trial field, using a combination of two recombinant antigens, TSOL16 and TSOL18, was undertaken in rural villages of Peru to evaluate the efficacy of this vaccine under natural conditions. Pairs of pigs (n=137) comprising one vaccinated and one control animal, were allocated to local villagers. Animals received two vaccinations with 200μg of each of TSOL16 and TSOL18, plus 5mg Quil-A. Necropsies were performed 7 months after the animals were distributed to the farmers. Vaccination reduced 99.7% and 99.9% (p<0.01) the total number of cysts and the number of viable cysts, respectively. Immunization with the TSOL16–TSOL18 vaccines has the potential to control T. solium transmission in areas where the disease is endemic, reducing the source for tapeworm infections in humans

    Vaccines to combat the neglected tropical diseases

    No full text
    The neglected tropical diseases (NTDs) represent a group of parasitic and related infectious diseases such as amebiasis, Chagas disease, cysticercosis, echinococcosis, hookworm, leishmaniasis, and schistosomiasis. Together, these conditions are considered the most common infections in low- and middle-income countries, where they produce a level of global disability and human suffering equivalent to better known conditions such as human immunodeficiency virus/acquired immunodeficiency syndrome and malaria. Despite their global public health importance, progress on developing vaccines for NTD pathogens has lagged because of some key technical hurdles and the fact that these infections occur almost exclusively in the world's poorest people living below the World Bank poverty line. In the absence of financial incentives for new products, the multinational pharmaceutical companies have not embarked on substantive research and development programs for the neglected tropical disease vaccines. Here, we review the current status of scientific and technical progress in the development of new neglected tropical disease vaccines, highlighting the successes that have been achieved (cysticercosis and echinococcosis) and identifying the challenges and opportunities for development of new vaccines for NTDs. Also highlighted are the contributions being made by non-profit product development partnerships that are working to overcome some of the economic challenges in vaccine manufacture, clinical testing, and global access

    Public health risks associated with food‐borne parasites

    No full text
    corecore