25 research outputs found

    Small Molecule, Non-Peptide p75NTR Ligands Inhibit Aβ-Induced Neurodegeneration and Synaptic Impairment

    Get PDF
    The p75 neurotrophin receptor (p75NTR) is expressed by neurons particularly vulnerable in Alzheimer's disease (AD). We tested the hypothesis that non-peptide, small molecule p75NTR ligands found to promote survival signaling might prevent Aβ-induced degeneration and synaptic dysfunction. These ligands inhibited Aβ-induced neuritic dystrophy, death of cultured neurons and Aβ-induced death of pyramidal neurons in hippocampal slice cultures. Moreover, ligands inhibited Aβ-induced activation of molecules involved in AD pathology including calpain/cdk5, GSK3β and c-Jun, and tau phosphorylation, and prevented Aβ-induced inactivation of AKT and CREB. Finally, a p75NTR ligand blocked Aβ-induced hippocampal LTP impairment. These studies support an extensive intersection between p75NTR signaling and Aβ pathogenic mechanisms, and introduce a class of specific small molecule ligands with the unique ability to block multiple fundamental AD-related signaling pathways, reverse synaptic impairment and inhibit Aβ-induced neuronal dystrophy and death

    Mesenchymal stem cells and neural crest stem cells from adult bone marrow: characterization of their surprising similarities and differences

    Full text link
    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crest stem cells (NCSC) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSC), including their similarities and differences. In this paper, using transcriptomic as well as proteomic technologies, we compared NCSC to MSC and stromal nestin-positive cells, all of them isolated from adult bone marrow. We demonstrated that the nestin-positive cell population, which was the first to be described as able to differentiate into functional neurons, was a mixed population of NCSC and MSC. More interestingly, we demonstrated that MSC shared with NCSC the same ability to truly differentiate into Tuj1-positive cells when co-cultivated with paraformaldehyde-fixed cerebellar granule neurons. Altogether, those results suggest that both NCSC and MSC can be considered as important tools for cellular therapies in order to replace neurons in various neurological diseases

    WNT/β-catenin pathway activation in Myc immortalised cerebellar progenitor cells inhibits neuronal differentiation and generates tumours resembling medulloblastoma

    Get PDF
    Background: Medulloblastoma is the most common malignant childhood brain tumour. Aberrant activation of the WNT/β-catenin pathway occurs in approximately 25% of medulloblastomas. However, its role in medulloblastoma pathogenesis is not understood. Methods: We have developed a model of WNT/β-catenin pathway-activated medulloblastoma. Pathway activation was induced in a Myc immortalised cerebellar progenitor cell line through stable expression of Wnt1. In vitro and in vivo analysis was undertaken to understand the effect of pathway activation and identify the potential cell of origin. Results: Tumours that histologically resembled classical medulloblastoma formed in vivo using cells overexpressing Wnt1, but not with the control cell line. Wnt1 overexpression inhibited neuronal differentiation in vitro, suggesting WNT/β-catenin pathway activation prevents cells terminally differentiating, maintaining them in a more ‘stem-like’ state. Analysis of cerebellar progenitor cell markers demonstrated the cell line resembled cells from the cerebellar ventricular zone. conclusion: We have developed a cell line with the means of orthotopically modelling WNT/β-catenin pathway-activated medulloblastoma. We provide evidence of the role pathway activation is playing in tumour pathogenesis and suggest medulloblastomas can arise from cells other than granule cell progenitors. This cell line is a valuable resource to further understand the role of pathway activation in tumorigenesis and for investigation of targeted therapies

    Dynamic Nature of the p75 Neurotrophin Receptor in Response to Injury and Disease

    No full text
    Neurotrophins and their respective tropomyosin related kinase (Trk) receptors (TrkA, TrkB, and TrkC) and the p75 neurotrophin receptor (p75(NTR)) play a fundamental role in the development and maintenance of the nervous system making them important targets for treatment of neurodegenerative diseases. Whereas Trk receptors are directly activated by specific neurotrophins, the p75(NTR) is a multifunctional receptor that exerts its effects via heterodimeric interactions with TrkA, TrkB, TrkC, sortilin or the Nogo receptor to regulate a wide array of cellular functions. By partnering with different receptors the p75(NTR) regulates binding of mature versus pro-neurotrophins and activation of different signaling pathways with outcomes ranging from growth and survival to cell death. While the developmental downregulation of the p75(NTR) has raised questions regarding its role in the mature nervous system, recent data have revealed widespread expression of low levels, a role in synaptic plasticity and adult neurogenesis and upregulation in response to injury or disease. Studies are needed to better understand these processes, particularly in the damaged nervous system, but will be complicated by expression of p75(NTR) on immune cells including macrophages and microglia that are intimately involved in disease and repair processes. Recent approaches that regulate p75(NTR) function with small non-peptide ligands have demonstrated potent neuroprotection in models of injury and neurodegenerative diseases that highlight the importance of the p75(NTR) as a therapeutic target. Future studies hold the promise of revealing a wealth of information on the multifaceted actions of the p75(NTR) that will inform the design of new neurotrophin-based therapies

    Hepatic stellate cells and astrocytes: Stars of scar formation and tissue repair

    No full text
    Scar formation inhibits tissue repair and regeneration in the liver and central nervous system. Activation of hepatic stellate cells (HSCs) after liver injury or of astrocytes after nervous system damage is considered to drive scar formation. HSCs are the fibrotic cells of the liver, as they undergo activation and acquire fibrogenic properties after liver injury. HSC activation has been compared to reactive gliosis of astrocytes, which acquire a reactive phenotype and contribute to scar formation after nervous system injury, much like HSCs after liver injury. It is intriguing that a wide range of neuroglia-related molecules are expressed by HSCs. We identified an unexpected role for the p75 neurotrophin receptor in regulating HSC activation and liver repair. Here we discuss the molecular mechanisms that regulate HSC activation and reactive gliosis and their contributions to scar formation and tissue repair. Juxtaposing key mechanistic and functional similarities in HSC and astrocyte activation might provide novel insight into liver regeneration and nervous system repair

    p75NTR Processing and Signaling: Functional Role

    No full text
    corecore