8,872 research outputs found
Space-time modeling of soil moisture: Stochastic rainfall forcing with heterogeneous vegetation
The present paper complements that of Isham et al. (2005), who introduced a space-time soil moisture model driven by stochastic space-time rainfall forcing with homogeneous vegetation and in the absence of topographical landscape effects. However, the spatial variability of vegetation may significantly modify the soil moisture dynamics with important implications for hydrological modeling. In the present paper, vegetation heterogeneity is incorporated through a two dimensional Poisson process representing the coexistence of two functionally different types of plants (e.g., trees and grasses). The space-time statistical structure of relative soil moisture is characterized through its covariance function which depends on soil, vegetation, and rainfall patterns. The statistical properties of the soil moisture process averaged in space and time are also investigated. These properties are especially important for any modeling that aggregates soil moisture characteristics over a range of spatial and temporal scales. It is found that particularly at small scales, vegetation heterogeneity has a significant impact on the averaged process as compared with the uniform vegetation case. Also, averaging in space considerably smoothes the soil moisture process, but in contrast, averaging in time up to 1 week leads to little change in the variance of the averaged process
A Recurrent Neural Network Survival Model: Predicting Web User Return Time
The size of a website's active user base directly affects its value. Thus, it
is important to monitor and influence a user's likelihood to return to a site.
Essential to this is predicting when a user will return. Current state of the
art approaches to solve this problem come in two flavors: (1) Recurrent Neural
Network (RNN) based solutions and (2) survival analysis methods. We observe
that both techniques are severely limited when applied to this problem.
Survival models can only incorporate aggregate representations of users instead
of automatically learning a representation directly from a raw time series of
user actions. RNNs can automatically learn features, but can not be directly
trained with examples of non-returning users who have no target value for their
return time. We develop a novel RNN survival model that removes the limitations
of the state of the art methods. We demonstrate that this model can
successfully be applied to return time prediction on a large e-commerce dataset
with a superior ability to discriminate between returning and non-returning
users than either method applied in isolation.Comment: Accepted into ECML PKDD 2018; 8 figures and 1 tabl
Detecting bias arising from delayed recording of time
Sometimes in studies of the dependence of survival time on explanatory variables the natural time origin for defining entry into study cannot be observed and a delayed time origin is used instead. For example, diagnosis of disease may in some patients be made only at death. The effect of such delays is investigated both theoretically and in the context of the England and Wales National Cancer Register
Reply to comment by S. Nadarajah on "Space-time modeling of soil moisture: Stochastic rainfall forcing with heterogeneous vegetation"
Recommended from our members
Research data management and openness: the role of data sharing in developing institutional policies and practices
Purpose: To investigate the relationship between research data management (RDM) and data sharing in the formulation of RDM policies and development of practices in higher education institutions (HEIs).
Design/methodology/approach: Two strands of work were undertaken sequentially: firstly, content analysis of 37 RDM policies from UK HEIs; secondly, two detailed case studies of institutions with different approaches to RDM based on semi-structured interviews with staff involved in the development of RDM policy and services. The data are interpreted using insights from Actor Network Theory.
Findings: RDM policy formation and service development has created a complex set of networks within and beyond institutions involving different professional groups with widely varying priorities shaping activities. Data sharing is considered an important activity in the policies and services of HEIs studied, but its prominence can in most cases be attributed to the positions adopted by large research funders.
Research limitations/implications: The case studies, as research based on qualitative data, cannot be assumed to be universally applicable but do illustrate a variety of issues and challenges experienced more generally, particularly in the UK.
Practical implications: The research may help to inform development of policy and practice in RDM in HEIs and funder organisations.
Originality/value: This paper makes an early contribution to the RDM literature on the specific topic of the relationship between RDM policy and services, and openness – a topic which to date has received limited attention
A Quantile Variant of the EM Algorithm and Its Applications to Parameter Estimation with Interval Data
The expectation-maximization (EM) algorithm is a powerful computational
technique for finding the maximum likelihood estimates for parametric models
when the data are not fully observed. The EM is best suited for situations
where the expectation in each E-step and the maximization in each M-step are
straightforward. A difficulty with the implementation of the EM algorithm is
that each E-step requires the integration of the log-likelihood function in
closed form. The explicit integration can be avoided by using what is known as
the Monte Carlo EM (MCEM) algorithm. The MCEM uses a random sample to estimate
the integral at each E-step. However, the problem with the MCEM is that it
often converges to the integral quite slowly and the convergence behavior can
also be unstable, which causes a computational burden. In this paper, we
propose what we refer to as the quantile variant of the EM (QEM) algorithm. We
prove that the proposed QEM method has an accuracy of while the MCEM
method has an accuracy of . Thus, the proposed QEM method
possesses faster and more stable convergence properties when compared with the
MCEM algorithm. The improved performance is illustrated through the numerical
studies. Several practical examples illustrating its use in interval-censored
data problems are also provided
Combining frequency and time domain approaches to systems with multiple spike train input and output
A frequency domain approach and a time domain approach have been combined in an investigation of the behaviour of the primary and secondary endings of an isolated muscle spindle in response to the activity of two static fusimotor axons when the parent muscle is held at a fixed length and when it is subjected to random length changes. The frequency domain analysis has an associated error process which provides a measure of how well the input processes can be used to predict the output processes and is also used to
specify how the interactions between the recorded processes
contribute to this error. Without assuming stationarity of the input, the time domain approach uses a sequence of probability models of increasing complexity in which the number of input processes to the model is progressively increased. This feature of the time domain approach was used to identify a preferred direction of interaction between the processes underlying the generation of the activity of the primary and secondary endings. In the presence of fusimotor activity and dynamic length changes imposed on the muscle, it was shown that the activity of the primary and secondary endings carried different information about the effects of the inputs imposed on the muscle spindle. The results presented in this work emphasise that the analysis of the behaviour of complex
systems benefits from a combination of frequency and time
domain methods
Fixed Effect Estimation of Large T Panel Data Models
This article reviews recent advances in fixed effect estimation of panel data
models for long panels, where the number of time periods is relatively large.
We focus on semiparametric models with unobserved individual and time effects,
where the distribution of the outcome variable conditional on covariates and
unobserved effects is specified parametrically, while the distribution of the
unobserved effects is left unrestricted. Compared to existing reviews on long
panels (Arellano and Hahn 2007; a section in Arellano and Bonhomme 2011) we
discuss models with both individual and time effects, split-panel Jackknife
bias corrections, unbalanced panels, distribution and quantile effects, and
other extensions. Understanding and correcting the incidental parameter bias
caused by the estimation of many fixed effects is our main focus, and the
unifying theme is that the order of this bias is given by the simple formula
p/n for all models discussed, with p the number of estimated parameters and n
the total sample size.Comment: 40 pages, 1 tabl
A semi-Markov model for stroke with piecewise-constant hazards in the presence of left, right and interval censoring.
This paper presents a parametric method of fitting semi-Markov models with piecewise-constant hazards in the presence of left, right and interval censoring. We investigate transition intensities in a three-state illness-death model with no recovery. We relax the Markov assumption by adjusting the intensity for the transition from state 2 (illness) to state 3 (death) for the time spent in state 2 through a time-varying covariate. This involves the exact time of the transition from state 1 (healthy) to state 2. When the data are subject to left or interval censoring, this time is unknown. In the estimation of the likelihood, we take into account interval censoring by integrating out all possible times for the transition from state 1 to state 2. For left censoring, we use an Expectation-Maximisation inspired algorithm. A simulation study reflects the performance of the method. The proposed combination of statistical procedures provides great flexibility. We illustrate the method in an application by using data on stroke onset for the older population from the UK Medical Research Council Cognitive Function and Ageing Study
Del Pezzo surfaces with 1/3(1,1) points
We classify del Pezzo surfaces with 1/3(1,1) points in 29 qG-deformation
families grouped into six unprojection cascades (this overlaps with work of
Fujita and Yasutake), we tabulate their biregular invariants, we give good
model constructions for surfaces in all families as degeneracy loci in rep
quotient varieties and we prove that precisely 26 families admit
qG-degenerations to toric surfaces. This work is part of a program to study
mirror symmetry for orbifold del Pezzo surfaces.Comment: 42 pages. v2: model construction added of last remaining surface,
minor corrections, minor changes to presentation, references adde
- …
