5,124 research outputs found

    LOW-MASS X-RAY BINARIES AND THEIR RELATION TO THE NON-X-RAY SOURCES

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73252/1/j.1749-6632.1977.tb37032.x.pd

    X-ray Pulsations in the Supersoft X-ray Binary CAL 83

    Full text link
    X-ray data reveal that the supersoft X-ray binary CAL 83 exhibits 38.4 minute pulsations at some epochs. These X-ray variations are similar to those found in some novae and are likely to be caused by nonradial pulsations the white dwarf. This is the first detection of pulsations in a classical supersoft X-ray binary.Comment: revised text; 11 pages and 3 figures; accepted for publication in the Astronomical Journa

    Model of two-fluid reconnection

    Full text link
    A theoretical model of quasi-stationary, two-dimensional magnetic reconnection is presented in the framework of incompressible two-fluid magnetohydrodynamics (MHD). The results are compared with recent numerical simulations and experiment.Comment: 4 pages, 1 figure, accepted to Physical Review Letter

    The Core-Wing Anomaly of Cool Ap Stars: Abnormal Balmer Profiles

    Get PDF
    Paper by Cowley et al. The Core-Wing Anomaly Etc. The profiles of Hα\alpha in a number of cool Ap stars are anomalous. Broad wings, indicative of temperatures in the range 7000-8000K end abruptly in narrow cores. The widths of these cores are compatible with those of dwarfs with temperatures of 6000K or lower. This profile has been known for Przybylski's star, but it is seen in other cool Ap's. The Hβ\beta profile in several of these stars shows a similar core-wing anomaly (CWA). In Przybylski's star, the CWA is probably present at higher Balmer members. We are unable to account for these profiles within the context of LTE and normal dwarf atmospheres. We conclude that the atmospheres of these stars are not ``normal.'' This is contrary to a notion that has long been held.Comment: 4 Pages 5 Figures. Submitted to Astronomy and Astrophysics 4 Dec. 200

    Density pattern in supercritical flow of liquid He-4

    Full text link
    A density functional theory is used to investigate the instability arising in superfluid 4^4He as it flows at velocity u just above the Landau critical velocity of rotons v_c. Confirming an early theoretical prediction by one of us [JETP Lett. 39, 511 (1984)], we find that a stationary periodic modulation of the density occurs, with amplitude proportional to (u-v_c)^{1/2} and wave vector equal to the roton wave vector. This density pattern is studied for supercritical flow both in bulk helium and in a channel of nanometer cross-section.Comment: 4 pages, 6 figures. Submitted to Phys. Rev.
    • …
    corecore