19 research outputs found
Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition
SummarySmoothened (SMO) inhibitors recently entered clinical trials for sonic-hedgehog-driven medulloblastoma (SHH-MB). Clinical response is highly variable. To understand the mechanism(s) of primary resistance and identify pathways cooperating with aberrant SHH signaling, we sequenced and profiled a large cohort of SHH-MBs (n = 133). SHH pathway mutations involved PTCH1 (across all age groups), SUFU (infants, including germline), and SMO (adults). Children >3 years old harbored an excess of downstream MYCN and GLI2 amplifications and frequent TP53 mutations, often in the germline, all of which were rare in infants and adults. Functional assays in different SHH-MB xenograft models demonstrated that SHH-MBs harboring a PTCH1 mutation were responsive to SMO inhibition, whereas tumors harboring an SUFU mutation or MYCN amplification were primarily resistant
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Yes-Associated Protein 1 Is Activated and Functions as an Oncogene in Meningiomas
The Hippo signaling pathway is functionally conserved in Drosophila melanogaster and mammals, and its proposed function is to control tissue homeostasis by regulating cell proliferation and apoptosis. The core components are composed of a kinase cascade that culminates with the phosphorylation and inhibition of Yes-associated protein 1 (YAP1). Phospho-YAP1 is retained in the cytoplasm. In the absence of Hippo signaling, YAP1 translocates to the nucleus, associates with co-activators TEAD1-4, and functions as a transcriptional factor promoting the expression of key target genes. Components of the Hippo pathway are mutated in human cancers, and deregulation of this pathway plays a role in tumorigenesis. Loss of the NF2 tumor suppressor gene is the most common genetic alteration in meningiomas, and the NF2 gene product, Merlin, acts upstream of the Hippo pathway. Here, we show that primary meningioma tumors have high nuclear expression of YAP1. In meningioma cells, Merlin expression is associated with phosphorylation of YAP1. Using an siRNA transient knockdown of YAP1 in NF2-mutant meningioma cells, we show that suppression of YAP1 impaired cell proliferation and migration. Conversely, YAP1 overexpression led to a strong augment of cell proliferation and anchorage-independent growth and restriction of cisplatin-induced apoptosis. In addition, expression of YAP1 in nontransformed arachnoidal cells led to the development of tumors in nude mice. Together, these findings suggest that in meningiomas, deregulation of the Hippo pathway is largely observed in primary tumors and that YAP1 functions as an oncogene promoting meningioma tumorigenesis
Recommended from our members
Generation of a patient-derived chordoma xenograft and characterization of the phosphoproteome in a recurrent chordoma.
ObjectThe management of patients with locally recurrent or metastatic chordoma is a challenge. Preclinical disease models would greatly accelerate the development of novel therapeutic options for chordoma. The authors sought to establish and characterize a primary xenograft model for chordoma that faithfully recapitulates the molecular features of human chordoma.MethodsChordoma tissue from a recurrent clival tumor was obtained at the time of surgery and implanted subcutaneously into NOD-SCID interleukin-2 receptor gamma (IL-2Rγ) null (NSG) mouse hosts. Successful xenografts were established and passaged in the NSG mice. The recurrent chordoma and the derived human chordoma xenograft were compared by histology, immunohistochemistry, and phospho-specific immunohistochemistry. Based on these results, mice harboring subcutaneous chordoma xenografts were treated with the mTOR inhibitor MLN0128, and tumors were subjected to phosphoproteome profiling using Luminex technology and immunohistochemistry.ResultsSF8894 is a novel chordoma xenograft established from a recurrent clival chordoma that faithfully recapitulates the histopathological, immunohistological, and phosphoproteomic features of the human tumor. The PI3K/Akt/mTOR pathway was activated, as evidenced by diffuse immunopositivity for phospho-epitopes, in the recurrent chordoma and in the established xenograft. Treatment of mice harboring chordoma xenografts with MLN0128 resulted in decreased activity of the PI3K/Akt/mTOR signaling pathway as indicated by decreased phospho-mTOR levels (p = 0.019, n = 3 tumors per group).ConclusionsThe authors report the establishment of SF8894, a recurrent clival chordoma xenograft that mimics many of the features of the original tumor and that should be a useful preclinical model for recurrent chordoma
Generation of a patient-derived chordoma xenograft and characterization of the phosphoproteome in a recurrent chordoma
ObjectThe management of patients with locally recurrent or metastatic chordoma is a challenge. Preclinical disease models would greatly accelerate the development of novel therapeutic options for chordoma. The authors sought to establish and characterize a primary xenograft model for chordoma that faithfully recapitulates the molecular features of human chordoma.MethodsChordoma tissue from a recurrent clival tumor was obtained at the time of surgery and implanted subcutaneously into NOD-SCID interleukin-2 receptor gamma (IL-2Rγ) null (NSG) mouse hosts. Successful xenografts were established and passaged in the NSG mice. The recurrent chordoma and the derived human chordoma xenograft were compared by histology, immunohistochemistry, and phospho-specific immunohistochemistry. Based on these results, mice harboring subcutaneous chordoma xenografts were treated with the mTOR inhibitor MLN0128, and tumors were subjected to phosphoproteome profiling using Luminex technology and immunohistochemistry.ResultsSF8894 is a novel chordoma xenograft established from a recurrent clival chordoma that faithfully recapitulates the histopathological, immunohistological, and phosphoproteomic features of the human tumor. The PI3K/Akt/mTOR pathway was activated, as evidenced by diffuse immunopositivity for phospho-epitopes, in the recurrent chordoma and in the established xenograft. Treatment of mice harboring chordoma xenografts with MLN0128 resulted in decreased activity of the PI3K/Akt/mTOR signaling pathway as indicated by decreased phospho-mTOR levels (p = 0.019, n = 3 tumors per group).ConclusionsThe authors report the establishment of SF8894, a recurrent clival chordoma xenograft that mimics many of the features of the original tumor and that should be a useful preclinical model for recurrent chordoma
Yes-Associated Protein 1 Is Activated and Functions as an Oncogene in Meningiomas
The Hippo signaling pathway is functionally conserved in Drosophila melanogaster and mammals, and its proposed function is to control tissue homeostasis by regulating cell proliferation and apoptosis. The core components are composed of a kinase cascade that culminates with the phosphorylation and inhibition of Yes-associated protein 1 (YAP1). Phospho-YAP1 is retained in the cytoplasm. In the absence of Hippo signaling, YAP1 translocates to the nucleus, associates with co-activators TEAD1-4, and functions as a transcriptional factor promoting the expression of key target genes. Components of the Hippo pathway are mutated in human cancers, and deregulation of this pathway plays a role in tumorigenesis. Loss of the NF2 tumor suppressor gene is the most common genetic alteration in meningiomas, and the NF2 gene product, Merlin, acts upstream of the Hippo pathway. Here, we show that primary meningioma tumors have high nuclear expression of YAP1. In meningioma cells, Merlin expression is associated with phosphorylation of YAP1. Using an siRNA transient knockdown of YAP1 in NF2-mutant meningioma cells, we show that suppression of YAP1 impaired cell proliferation and migration. Conversely, YAP1 overexpression led to a strong augment of cell proliferation and anchorage-independent growth and restriction of cisplatin-induced apoptosis. In addition, expression of YAP1 in nontransformed arachnoidal cells led to the development of tumors in nude mice. Together, these findings suggest that in meningiomas, deregulation of the Hippo pathway is largely observed in primary tumors and that YAP1 functions as an oncogene promoting meningioma tumorigenesis
PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome.
The signaling pathways that underlie the pathogenesis of pediatric gliomas are poorly understood. We characterized the PI3K/Akt/mTOR pathway in pediatric gliomas of all grades. Using immunohistochemistry, we assessed activation of the PI3K/Akt/mTOR pathway by evaluating the downstream signaling molecules phospho(p)-S6, phospho(p)-4BP1, and phospho(p)-PRAS40; PTEN; and PTEN promoter methylation, as well as the MIB labeling index. We correlated these findings with the clinical outcomes of 48 children with gliomas. Eighty percent of high-grade gliomas (12/15) showed activation of the PI3K/Akt/mTOR pathway based on p-S6 and p-4EBP1 expression. The majority of high-grade gliomas were negative for PTEN expression (10/15), and 50% had PTEN promoter methylation (grade III: 2/4; grade IV: 3/6). Low-grade gliomas demonstrated PI3K/Akt/mTOR pathway activation in 14/32 (43.8%) by p-S6 and 16/32 (50%) by p-4EBP1. Over 50% of grade I (6/11) and almost all grade II tumors (6/7) showed PTEN promoter methylation. Tumor grade correlated negatively with PTEN expression and positively with expression of p-S6 and p-4EBP1 (PTEN: P = .0025; pS6: P = .0075; p-4EBP1: P = .0066). There was a trend toward inverse correlation of methylation of the PTEN promoter with expression of PTEN protein (P= .0990) and direct correlation of expression of p-S6 and p-4EBP1 with poorer clinical outcome, as measured by progression-free survival (p-S6: P= .0874; p-4EBP1: P= .0475). Tumors with no PTEN expression had a higher MIB labeling index (P= .007). The majority of pediatric gliomas show activation of the PI3K/Akt/mTOR pathway, with methylation of the PTEN promoter occurring commonly in these tumors
Recommended from our members
PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome
The signaling pathways that underlie the pathogenesis of pediatric gliomas are poorly understood. We characterized the PI3K/Akt/mTOR pathway in pediatric gliomas of all grades. Using immunohistochemistry, we assessed activation of the PI3K/Akt/mTOR pathway by evaluating the downstream signaling molecules phospho(p)-S6, phospho(p)-4BP1, and phospho(p)-PRAS40; PTEN; and PTEN promoter methylation, as well as the MIB labeling index. We correlated these findings with the clinical outcomes of 48 children with gliomas. Eighty percent of high-grade gliomas (12/15) showed activation of the PI3K/Akt/mTOR pathway based on p-S6 and p-4EBP1 expression. The majority of high-grade gliomas were negative for PTEN expression (10/15), and 50% had PTEN promoter methylation (grade III: 2/4; grade IV: 3/6). Low-grade gliomas demonstrated PI3K/Akt/mTOR pathway activation in 14/32 (43.8%) by p-S6 and 16/32 (50%) by p-4EBP1. Over 50% of grade I (6/11) and almost all grade II tumors (6/7) showed PTEN promoter methylation. Tumor grade correlated negatively with PTEN expression and positively with expression of p-S6 and p-4EBP1 (PTEN: P = .0025; pS6: P = .0075; p-4EBP1: P = .0066). There was a trend toward inverse correlation of methylation of the PTEN promoter with expression of PTEN protein (P= .0990) and direct correlation of expression of p-S6 and p-4EBP1 with poorer clinical outcome, as measured by progression-free survival (p-S6: P= .0874; p-4EBP1: P= .0475). Tumors with no PTEN expression had a higher MIB labeling index (P= .007). The majority of pediatric gliomas show activation of the PI3K/Akt/mTOR pathway, with methylation of the PTEN promoter occurring commonly in these tumors
Recommended from our members
PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome.
The signaling pathways that underlie the pathogenesis of pediatric gliomas are poorly understood. We characterized the PI3K/Akt/mTOR pathway in pediatric gliomas of all grades. Using immunohistochemistry, we assessed activation of the PI3K/Akt/mTOR pathway by evaluating the downstream signaling molecules phospho(p)-S6, phospho(p)-4BP1, and phospho(p)-PRAS40; PTEN; and PTEN promoter methylation, as well as the MIB labeling index. We correlated these findings with the clinical outcomes of 48 children with gliomas. Eighty percent of high-grade gliomas (12/15) showed activation of the PI3K/Akt/mTOR pathway based on p-S6 and p-4EBP1 expression. The majority of high-grade gliomas were negative for PTEN expression (10/15), and 50% had PTEN promoter methylation (grade III: 2/4; grade IV: 3/6). Low-grade gliomas demonstrated PI3K/Akt/mTOR pathway activation in 14/32 (43.8%) by p-S6 and 16/32 (50%) by p-4EBP1. Over 50% of grade I (6/11) and almost all grade II tumors (6/7) showed PTEN promoter methylation. Tumor grade correlated negatively with PTEN expression and positively with expression of p-S6 and p-4EBP1 (PTEN: P = .0025; pS6: P = .0075; p-4EBP1: P = .0066). There was a trend toward inverse correlation of methylation of the PTEN promoter with expression of PTEN protein (P= .0990) and direct correlation of expression of p-S6 and p-4EBP1 with poorer clinical outcome, as measured by progression-free survival (p-S6: P= .0874; p-4EBP1: P= .0475). Tumors with no PTEN expression had a higher MIB labeling index (P= .007). The majority of pediatric gliomas show activation of the PI3K/Akt/mTOR pathway, with methylation of the PTEN promoter occurring commonly in these tumors
Recommended from our members
LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR).
Embryonal tumor with multilayered rosettes (ETMR, previously known as ETANTR) is a highly aggressive embryonal CNS tumor, which almost exclusively affects infants and is associated with a dismal prognosis. Accurate diagnosis is of critical clinical importance because of its poor response to current treatment protocols and its distinct biology. Amplification of the miRNA cluster at 19q13.42 has been identified previously as a genetic hallmark for ETMR, but an immunohistochemistry-based assay for clinical routine diagnostics [such as INI-1 for atypical teratoid rhabdoid tumor (AT/RT)] is still lacking. In this study, we screened for an ETMR-specific marker using a gene-expression profiling dataset of more than 1,400 brain tumors and identified LIN28A as a highly specific marker for ETMR. The encoded protein binds small RNA and has been implicated in stem cell pluripotency, metabolism and tumorigenesis. Using an LIN28A specific antibody, we carried out immunohistochemical analysis of LIN28A in more than 800 childhood brain-tumor samples and confirmed its high specificity for ETMR. Strong LIN28A immunoexpression was found in all 37 ETMR samples tested, whereas focal reactivity was only present in a small (6/50) proportion of AT/RT samples. All other pediatric brain tumors were completely LIN28A-negative. In summary, we established LIN28A immunohistochemistry as a highly sensitive and specific, rapid, inexpensive diagnostic tool for routine pathological verification of ETMR